Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb;20(2):156-169.
doi: 10.1038/s41563-020-0754-0. Epub 2020 Aug 17.

Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases

Affiliations
Review

Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases

Masayuki Fujii et al. Nat Mater. 2021 Feb.

Abstract

Recent progress in our understanding of the regulation of epithelial tissue stem cells has allowed us to exploit their abilities and instruct them to self-organize into tissue-mimicking structures, so-called organoids. Organoids preserve the molecular, structural and functional characteristics of their tissues of origin, thus providing an attractive opportunity to study the biology of human tissues in health and disease. In parallel to deriving organoids from yet-uncultured epithelial tissues, the field is devoting a growing amount of effort to model human diseases using organoids. This Review describes multidisciplinary approaches for creating organoid models of human genetic, neoplastic, immunological and infectious diseases, and details how they have contributed to our understanding of disease biology. We further highlight the potential role as well as limitations of organoids in clinical practice and showcase the latest achievements and approaches for tuning the organoid culture system to position organoids in biologically defined settings and to grant organoids with better representation of human tissues.

PubMed Disclaimer

References

    1. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).
    1. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).
    1. Stelzner, M. et al. A nomenclature for intestinal in vitro cultures. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1359–G1363 (2012).
    1. Date, S. & Sato, T. Mini-gut organoids: reconstitution of the stem cell niche. Annu. Rev. Cell Dev. Biol. 31, 269–289 (2015).
    1. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).