Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 23;127(10):1261-1273.
doi: 10.1161/CIRCRESAHA.120.317132. Epub 2020 Aug 20.

Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD

Affiliations
Free article

Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD

Shafaat Hussain et al. Circ Res. .
Free article

Abstract

Rationale: Hyperglycemia -induced reactive oxygen species are key mediators of cardiac dysfunction. JunD (Jund proto-oncogene subunit), a member of the AP-1 (activator protein-1) family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to redox state and inflammation in the diabetic heart remains to be elucidated.

Objective: The present study investigates the role of JunD in hyperglycemia-induced and reactive oxygen species-driven myocardial dysfunction.

Methods and results: JunD mRNA and protein expression were reduced in the myocardium of mice with streptozotocin-induced diabetes mellitus as compared to controls. JunD downregulation was associated with oxidative stress and left ventricular dysfunction assessed by electron spin resonance spectroscopy as well as conventional and 2-dimensional speckle-tracking echocardiography. Furthermore, myocardial expression of free radical scavenger superoxide dismutase 1 and aldehyde dehydrogenase 2 was reduced, whereas the NOX2 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 2) and NOX4 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 4) were upregulated. The redox changes were associated with increased NF-κB (nuclear factor kappa B) binding activity and expression of inflammatory mediators. Interestingly, mice with cardiac-specific overexpression of JunD via the α MHC (α- myosin heavy chain) promoter (α MHC JunDtg) were protected against hyperglycemia-induced cardiac dysfunction. We also showed that JunD was epigenetically regulated by promoter hypermethylation, post-translational modification of histone marks, and translational repression by miRNA (microRNA)-673/menin. Reduced JunD mRNA and protein expression were confirmed in left ventricular specimens obtained from patients with type 2 diabetes mellitus as compared to nondiabetic subjects.

Conclusions: Here, we show that a complex epigenetic machinery involving DNA methylation, histone modifications, and microRNAs mediates hyperglycemia-induced JunD downregulation and myocardial dysfunction in experimental and human diabetes mellitus. Our results pave the way for tissue-specific therapeutic modulation of JunD to prevent diabetic cardiomyopathy.

Keywords: diabetes mellitus; heart failure; microRNA; reactive oxygen species; transcription factors.

PubMed Disclaimer

Publication types

MeSH terms