Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;26(9):2186-2189.
doi: 10.3201/eid2609.190670.

Chromobacterium haemolyticum Pneumonia Associated with Near-Drowning and River Water, Japan

Chromobacterium haemolyticum Pneumonia Associated with Near-Drowning and River Water, Japan

Hajime Kanamori et al. Emerg Infect Dis. 2020 Sep.

Abstract

We report a severe case of Chromobacterium haemolyticum pneumonia associated with near-drowning and detail the investigation of the pathogen and river water. Our genomic and environmental investigation demonstrated that river water in a temperate region can be a source of C. haemolyticum causing human infections.

Keywords: Chromobacterium haemolyticum; Japan; bacteria; environment; pneumonia; respiratory infections; whole-genome sequencing.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Core genome single-nucleotide variations in a phylogenetic analysis of 19 strains of Chromobacterium haemolyticum in a case of pneumonia associated with near-drowning in river water, Japan. In total, 252,974 SNV sites were detected in core genome region among 19 strains. The phylogenetic analysis with SNV data was constructed by maximum likelihood method. Two clinical isolates (CH06-BL and CH06-SPT) and 3 environmental isolates (CH08-RW1, CH08-RW2, and CH08-RW3) of C. haemolyticum in this study were discordant (27,867–29,491 SNVs). Scale bar indicates nucleotide substitutions per site. SNV, single nucleotide variant.
Figure 2
Figure 2
Metagenomic analysis of river water sample collected from the site of near-drowning of a patient with Chromobacterium haemolyticum pneumonia, Japan. A) Relative abundance of superkingdom, class of bacteria, and genus of betaproteobacteria in river water sample. The relative abundance of bacteria is 25.65%; the 10 most observed class and genus are summarized in cumulative bar charts. B) Comparison of relative abundance of bacteria causing pneumonia associated with drowning in genus level in the river water sample. The relative abundance of Chromobacterium, a Betaproteobacteria, is 0.073%.

References

    1. Blackburn MB, Farrar RR Jr, Sparks ME, Kuhar D, Mitchell A, Gundersen-Rindal DE. Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs. Int J Syst Evol Microbiol. 2017;67:3417–22. 10.1099/ijsem.0.002127 - DOI - PubMed
    1. Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol. 2008;58:1398–403. 10.1099/ijs.0.64681-0 - DOI - PubMed
    1. Bajaj A, Kumar A, Yadav S, Kaur G, Bala M, Singh NK, et al. Isolation and characterization of a novel Gram-negative bacterium Chromobacterium alkanivorans sp. nov., strain IITR-71T degrading halogenated alkanes. Int J Syst Evol Microbiol. 2016;66:5228–35. 10.1099/ijsem.0.001500 - DOI - PubMed
    1. Harmon N, Mortensen JE, Robinette E, Powell EA. Pediatric bacteremia caused by Chromobacterium haemolyticum/Chromobacterium aquaticum. Diagn Microbiol Infect Dis. 2016;86:108–11. 10.1016/j.diagmicrobio.2016.05.021 - DOI - PubMed
    1. Zhou S, Guo X, Wang H, Kong D, Wang Y, Zhu J, et al. Chromobacterium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol. 2016;66:3890–6. 10.1099/ijsem.0.001284 - DOI - PubMed

Publication types

Supplementary concepts