Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul:72:226-237.
doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17.

Deep computational pathology in breast cancer

Affiliations
Review

Deep computational pathology in breast cancer

Andrea Duggento et al. Semin Cancer Biol. 2021 Jul.

Abstract

Deep Learning (DL) algorithms are a set of techniques that exploit large and/or complex real-world datasets for cross-domain and cross-discipline prediction and classification tasks. DL architectures excel in computer vision tasks, and in particular image processing and interpretation. This has prompted a wave of disruptingly innovative applications in medical imaging, where DL strategies have the potential to vastly outperform human experts. This is particularly relevant in the context of histopathology, where whole slide imaging (WSI) of stained tissue in conjuction with DL algorithms for their interpretation, selection and cancer staging are beginning to play an ever increasing role in supporting human operators in visual assessments. This has the potential to reduce everyday workload as well as to increase precision and reproducibility across observers, centers, staining techniques and even pathologies. In this paper we introduce the most common DL architectures used in image analysis, with a focus on histopathological image analysis in general and in breast histology in particular. We briefly review how, state-of-art DL architectures compare to human performance on across a number of critical tasks such as mitotic count, tubules analysis and nuclear pleomorphism analysis. Also, the development of DL algorithms specialized to pathology images have been enormously fueled by a number of world-wide challenges based on large, multicentric image databases which are now publicly available. In turn, this has allowed most recent efforts to shift more and more towards semi-supervised learning methods, which provide greater flexibility and applicability. We also review all major repositories of manually labelled pathology images in breast cancer and provide an in-depth discussion of the challenges specific to training DL architectures to interpret WSI data, as well as a review of the state-of-the-art methods for interpretation of images generated from immunohistochemical analysis of breast lesions. We finally discuss the future challenges and opportunities which the adoption of DL paradigms is most likely to pose in the field of pathology for breast cancer detection, diagnosis, staging and prognosis. This review is intended as a comprehensive stepping stone into the field of modern computational pathology for a transdisciplinary readership across technical and medical disciplines.

Keywords: Breast cancer; Deep Learning; Deep Neural Networks; Deep histology; Digital pathology.

PubMed Disclaimer

LinkOut - more resources