Nitric oxide reactivity accounts for N-nitroso-ciprofloxacin formation under nitrate-reducing conditions
- PMID: 32818734
- DOI: 10.1016/j.watres.2020.116293
Nitric oxide reactivity accounts for N-nitroso-ciprofloxacin formation under nitrate-reducing conditions
Abstract
The formation of N-nitroso-ciprofloxacin (CIP) was investigated both in wastewater treatment plants including nitrification/denitrification stages and in sludge slurry experiments under denitrifying conditions. The analysis of biological wastewater treatment plant effluents by Kendrick mass defect analysis and liquid chromatography - high resolution - mass spectrometry (LCHRMS) revealed the occurrence of N-nitroso-CIP and N-nitroso-hydrochlorothiazide at concentration levels of 34 ± 3 ng/L and 71 ± 6 ng/L, respectively. In laboratory experiments and dark conditions, produced N-nitroso-CIP concentrations reached a plateau during the course of biodegradation experiments. A mass balance was achieved after identification and quantification of several transformation products by LCHRMS. N-nitroso-CIP accounted for 14.3% of the initial CIP concentration (20 µg/L) and accumulated against time. The use of 4,5-diaminofluorescein diacetate and superoxide dismutase as scavengers for in situ production of nitric oxide and superoxide radical anion respectively, revealed that the mechanisms of formation of N-nitroso-CIP likely involved a nitrosation pathway through the formation of peroxynitrite and another one through codenitrification processes, even though the former one appeared to be prevalent. This work extended the possible sources of N-nitrosamines by including a formation pathway relying on nitric oxide reactivity with secondary amines under activated sludge treatment.
Keywords: Activated sludge; Biodegradation; N-nitrosamine; N-nitroso-ciprofloxacin; Nitric oxide.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
