Learning prediction error neurons in a canonical interneuron circuit
- PMID: 32820723
- PMCID: PMC7442488
- DOI: 10.7554/eLife.57541
Learning prediction error neurons in a canonical interneuron circuit
Abstract
Sensory systems constantly compare external sensory information with internally generated predictions. While neural hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types shapes the development and refinement of negative prediction-error neurons in a computational model of mouse primary visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity can generate different variants of prediction-error circuits, which can be distinguished by simulated optogenetic experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed light on the circuitry underlying the neural computation of prediction errors.
Keywords: neural circuits; neuroscience; none; prediction-error neurons; predictive processing; sensorimotor processing; synaptic plasticity; visual system.
© 2020, Hertäg and Sprekeler.
Conflict of interest statement
LH, HS No competing interests declared
Figures















Similar articles
-
Prediction-error neurons in circuits with multiple neuron types: Formation, refinement, and functional implications.Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2115699119. doi: 10.1073/pnas.2115699119. Epub 2022 Mar 23. Proc Natl Acad Sci U S A. 2022. PMID: 35320037 Free PMC article.
-
Mouse vision as a gateway for understanding how experience shapes neural circuits.Front Neural Circuits. 2014 Oct 2;8:123. doi: 10.3389/fncir.2014.00123. eCollection 2014. Front Neural Circuits. 2014. PMID: 25324730 Free PMC article. Review.
-
Learning shapes cortical dynamics to enhance integration of relevant sensory input.Neuron. 2023 Jan 4;111(1):106-120.e10. doi: 10.1016/j.neuron.2022.10.001. Epub 2022 Oct 24. Neuron. 2023. PMID: 36283408 Free PMC article.
-
Neural circuit models for computations in early visual cortex.Curr Opin Neurobiol. 2011 Oct;21(5):808-15. doi: 10.1016/j.conb.2011.07.005. Epub 2011 Aug 26. Curr Opin Neurobiol. 2011. PMID: 21873046 Review.
-
Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.PLoS One. 2014 Feb 13;9(2):e88326. doi: 10.1371/journal.pone.0088326. eCollection 2014. PLoS One. 2014. PMID: 24551089 Free PMC article.
Cited by
-
Desegregation of neuronal predictive processing.bioRxiv [Preprint]. 2024 Aug 7:2024.08.05.606684. doi: 10.1101/2024.08.05.606684. bioRxiv. 2024. PMID: 39149380 Free PMC article. Preprint.
-
Unexpected events trigger task-independent signaling in VIP and excitatory neurons of mouse visual cortex.iScience. 2025 Jan 2;28(2):111728. doi: 10.1016/j.isci.2024.111728. eCollection 2025 Feb 21. iScience. 2025. PMID: 39898018 Free PMC article.
-
Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks.ArXiv [Preprint]. 2025 Mar 15:arXiv:2411.06802v3. ArXiv. 2025. PMID: 39650608 Free PMC article. Preprint.
-
Prediction-error neurons in circuits with multiple neuron types: Formation, refinement, and functional implications.Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2115699119. doi: 10.1073/pnas.2115699119. Epub 2022 Mar 23. Proc Natl Acad Sci U S A. 2022. PMID: 35320037 Free PMC article.
-
Simple synaptic modulations implement diverse novelty computations.Cell Rep. 2024 May 28;43(5):114188. doi: 10.1016/j.celrep.2024.114188. Epub 2024 May 6. Cell Rep. 2024. PMID: 38713584 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources