Dissecting the catalytic triad of a serine protease
- PMID: 3282170
- DOI: 10.1038/332564a0
Dissecting the catalytic triad of a serine protease
Abstract
Serine proteases are present in virtually all organisms and function both inside and outside the cell; they exist as two families, the 'trypsin-like' and the 'subtilisin-like', that have independently evolved a similar catalytic device characterized by the Ser, His, Asp triad, an oxyanion binding site, and possibly other determinants that stabilize the transition state (Fig. 1). For Bacillus amyloliquefaciens subtilisin, these functional elements impart a total rate enhancement of at least 10(9) to 10(10) times the non-enzymatic hydrolysis of amide bonds. We have examined the catalytic importance and interplay between residues within the catalytic triad by individual or multiple replacement with alanine(s), using site-directed mutagenesis of the cloned B. amyloliquefaciens subtilisin gene. Alanine substitutions were chosen to minimize unfavourable steric contacts and to avoid imposing new charge interactions or hydrogen bonds from the substituted side chains. In contrast to the effect of mutations in residues involved in substrate binding, the mutations in the catalytic triad greatly reduce the turnover number and cause only minor effects on the Michaelis constant. Kinetic analyses of the multiple mutants demonstrate that the residues within the triad interact synergistically to accelerate amide bond hydrolysis by a factor of approximately 2 X 10(6).
Similar articles
-
Functional interaction among catalytic residues in subtilisin BPN'.Proteins. 1990;7(4):335-42. doi: 10.1002/prot.340070405. Proteins. 1990. PMID: 2199971
-
Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.Biochemistry. 1996 Jan 16;35(2):398-410. doi: 10.1021/bi9515578. Biochemistry. 1996. PMID: 8555209
-
Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.Biochemistry. 2003 Sep 16;42(36):10545-53. doi: 10.1021/bi034773m. Biochemistry. 2003. PMID: 12962477
-
Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases.Int J Mol Sci. 2024 Nov 5;25(22):11858. doi: 10.3390/ijms252211858. Int J Mol Sci. 2024. PMID: 39595929 Free PMC article. Review.
-
Catalytic triads and their relatives.Trends Biochem Sci. 1998 Sep;23(9):347-52. doi: 10.1016/s0968-0004(98)01254-7. Trends Biochem Sci. 1998. PMID: 9787641 Review.
Cited by
-
Engineering subtilisin proteases that specifically degrade active RAS.Commun Biol. 2021 Mar 5;4(1):299. doi: 10.1038/s42003-021-01818-7. Commun Biol. 2021. PMID: 33674772 Free PMC article.
-
Characterization of the streptococcal C5a peptidase using a C5a-green fluorescent protein fusion protein substrate.J Bacteriol. 2000 Jun;182(11):3254-8. doi: 10.1128/JB.182.11.3254-3258.2000. J Bacteriol. 2000. PMID: 10809707 Free PMC article.
-
Identification of active-site residues of the adenovirus endopeptidase.Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):844-7. doi: 10.1073/pnas.91.3.844. Proc Natl Acad Sci U S A. 1994. PMID: 8302855 Free PMC article.
-
Fungal gasdermin-like proteins are controlled by proteolytic cleavage.Proc Natl Acad Sci U S A. 2022 Feb 15;119(7):e2109418119. doi: 10.1073/pnas.2109418119. Proc Natl Acad Sci U S A. 2022. PMID: 35135876 Free PMC article.
-
Computational design of serine hydrolases.bioRxiv [Preprint]. 2024 Aug 30:2024.08.29.610411. doi: 10.1101/2024.08.29.610411. bioRxiv. 2024. Update in: Science. 2025 Apr 18;388(6744):eadu2454. doi: 10.1126/science.adu2454. PMID: 39257749 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources