Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;9(1):97-105.
doi: 10.29252/rbmb.9.1.97.

ACE2 as Drug Target of COVID-19 Virus Treatment, Simplified Updated Review

Affiliations

ACE2 as Drug Target of COVID-19 Virus Treatment, Simplified Updated Review

Gomaa Mostafa-Hedeab. Rep Biochem Mol Biol. 2020 Apr.

Abstract

Background: Since its first appearance in December of 2019, regular updates around the world demonstrates that the number of new Corona Virus 2019 (COVID-19) cases are increasing rapidly, indicating that not only does COVID-19 exhibit a rapid spread pattern, but human intervention is necessary for its resolution. Up until today (27-5-2020) and according to the World Health Organization (WHO), the number of confirmed COVID-19 cases has surpassed 4.5 million with more than 307, 500 deaths. Almost all countries have been affected by COVID-19, and resultingly, various drug trials have been conducted, however, a targeted treatment remains to be made accessible to the public. Recently, Angiotensin-Converting Enzyme-2 (ACE2) has gained some attention for its discovery as a potential attachment target of COVID-19.

Methods: We reviewed the most recent evidence regarding ACE2 distribution and action, the binding mechanism of COVID-19 and its correlation to cellular injury, ACE2 polymorphisms and its association to fatal COVID-19 and susceptibility and, finally, current ACE2-based pharmacotherapies against COVID-19.

Results: Blocking the ACE2 receptor-binding domain (RBD) using a specific ligand can prevent COVID-19 from binding, and consequently cellular entry and injury. Comparatively, soluble ACE2, which has a higher affinity to COVID-19, can neutralize COVID-19 without affecting the homeostatic function of naturally occurring ACE2. Lastly, ACE2 mutations and their possible effect on the binding activity of COVID-19 may enable researchers to identify high-risk groups before they become exposed to COVID-19.

Conclusion: ACE2 represents a promising target to attenuate or prevent COVID-19 associated cellular injury.

Keywords: ACE, ACE2; COVID-19.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Diagrammatic demonstration showed the main differences between ACE and ACE2 and its effect on COVID-19. COVID-19 bind specifically to ACE2 on cell membrane od different tissues, followed by ACE2 downregulation and COVID-19 cellular entry and consequent cytokine storm and lung tissue injury. ACE2 downregulation results in decrease Ang 1-9 and Ang 1-7 decreasing their tissue protection and leaving ACE destructive power unopposed that result in increasing the rate and extend of lung tissue injury.

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497–506. - PMC - PubMed
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43. - PubMed
    1. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. - PMC - PubMed
    1. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science. . 2020;12(1):1–5. - PMC - PubMed
    1. Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, et al. Angiotensin 1-9 and 1-7 release in human heart: role of cathepsin A. . Hypertension. 2002;39(5):976–81. - PubMed

LinkOut - more resources