Thermal Characterization of Phantoms Used for Quality Assurance of Deep Hyperthermia Systems
- PMID: 32823788
- PMCID: PMC7472229
- DOI: 10.3390/s20164549
Thermal Characterization of Phantoms Used for Quality Assurance of Deep Hyperthermia Systems
Abstract
Tissue mimicking phantoms are frequently used in hyperthermia applications for device and protocol optimization. Unfortunately, a commonly experienced limitation is that their precise thermal properties are not available. Therefore, in this study, the thermal properties of three currently used QA phantoms for deep hyperthermia are measured with an "off-shelf" commercial thermal property analyzer. We have measured averaged values of thermal conductivity (k = 0.59 ± 0.07 Wm-1K-1), volumetric heat capacity (C = 3.85 ± 0.45 MJm-3K-1) and thermal diffusivity (D = 0.16 ± 0.02 mm2s-1). These values are comparable with reported values of internal organs, such as liver, kidney and muscle. In addition, a sensitivity study of the performance of the commercial sensor is conducted. To ensure correct thermal measurements, the sample under test should entirely cover the length of the sensor, and a minimum of 4 mm of material parallel to the sensor in all directions should be guaranteed.
Keywords: QA phantoms; deep hyperthermia; hyperthermia; thermal properties; thermal properties analyzer device; thermal properties sensitivity evaluation.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures




Similar articles
-
Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C.Sensors (Basel). 2023 Aug 2;23(15):6865. doi: 10.3390/s23156865. Sensors (Basel). 2023. PMID: 37571648 Free PMC article.
-
Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material.Int J Hyperthermia. 2003 Sep-Oct;19(5):551-62. doi: 10.1080/02656730310001607995. Int J Hyperthermia. 2003. PMID: 12944169
-
A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom.Int J Hyperthermia. 2020;37(1):1103-1115. doi: 10.1080/02656736.2020.1810331. Int J Hyperthermia. 2020. PMID: 32981391
-
Thermochromic Tissue-Mimicking Phantoms for Thermal Ablation Based on Polyacrylamide Gel.Ultrasound Med Biol. 2022 Aug;48(8):1361-1372. doi: 10.1016/j.ultrasmedbio.2022.03.021. Epub 2022 May 25. Ultrasound Med Biol. 2022. PMID: 35623921 Review.
-
Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review.Int J Hyperthermia. 2022;39(1):297-340. doi: 10.1080/02656736.2022.2028908. Int J Hyperthermia. 2022. PMID: 35129046
Cited by
-
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges.Ann Biomed Eng. 2023 Jun;51(6):1181-1198. doi: 10.1007/s10439-022-03122-9. Epub 2023 Jan 19. Ann Biomed Eng. 2023. PMID: 36656452 Free PMC article.
-
Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature.Sensors (Basel). 2021 Jun 21;21(12):4236. doi: 10.3390/s21124236. Sensors (Basel). 2021. PMID: 34205567 Free PMC article.
-
POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia.Med Phys. 2022 Aug;49(8):4955-4970. doi: 10.1002/mp.15811. Epub 2022 Jun 26. Med Phys. 2022. PMID: 35717578 Free PMC article.
-
Validation of the implementation of phased-array heating systems in Plan2Heat.Strahlenther Onkol. 2025 Feb;201(2):135-150. doi: 10.1007/s00066-024-02264-0. Epub 2024 Aug 14. Strahlenther Onkol. 2025. PMID: 39143400 Free PMC article.
-
Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms.Nanomaterials (Basel). 2022 Mar 13;12(6):945. doi: 10.3390/nano12060945. Nanomaterials (Basel). 2022. PMID: 35335758 Free PMC article.
References
-
- Fiaschetti G., Browne J.E., Cavagnaro M., Farina L., Ruvio G. Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Gran Canaria, Spain, 28 May–1 June. IEEE; Piscataway, NJ, USA: 2018. Tissue mimicking materials for multi-modality breast phantoms; pp. 1–6.
-
- Cavagnaro M., Pinto R., Lopresto V. Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May. IEEE; Piscataway, NJ, USA: 2019. Phantoms in hyperthermia and thermal ablation applications at microwave frequencies: A review; pp. 538–541.
-
- Cappiello G., Paulides M.M., Drizdal T., O’Loughlin D., O’Halloran M., Glavin M., van Rhoon G., Jones E. Robustness of time-multiplexed hyperthermia to temperature dependent thermal tissue properties. IEEE J. Electromagn. Rf Microw. Med. Biol. 2020;4:126–132. doi: 10.1109/JERM.2019.2959710. - DOI
-
- Ruvio G., Solimene R., Cuccaro A., Fiaschetti G., Fagan A.J., Cournane S., Cooke J., Ammann M.J., Tobon J., Browne J.E. Multimodal breast phantoms for microwave, ultrasound, mammography, magnetic resonance and computed tomography imaging. Sensors. 2020;20:2400. doi: 10.3390/s20082400. - DOI - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources