Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars
- PMID: 32825446
- PMCID: PMC7503254
- DOI: 10.3390/molecules25173795
Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars
Abstract
The globe artichoke (Cynara cardunculus L. subsp. Scolymus (L.) Hegi) is a multi-year species rich in various classes of phytochemicals with known nutritional and pharmacological properties, such as polyphenols, sesquiterpene lactones, and terpenoids. Over the last decade, hybrids cultivars are transforming the artichoke market for their higher uniformity and stability over the traditional landraces, further increasing the potential of the artichoke as a source of commercial extracts and bioactive molecules. Our aim was to investigate the mineral and phytochemical profiles of leaves from seven seed-propagated hybrids by using an untargeted metabolomic approach based on ultra-high-pressure liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Metabolomics identified several compounds in the tested varieties, namely 98 polyphenols, 123 sesquiterpene lactones, and 221 other metabolites. The phenolic content ranged from 3.01 mg Eq./g fw (for 'Opera') to 4.71 mg Eq./g fw (for 'Opal'). Sesquiterpene lactones were, on average, 2.11 mg Eq./g fw. Multivariate statistics (HCA, PCA and OPLS-DA) highlighted the main metabolomics differences among cultivars, which weakly correlated with their agronomic classification. The seven cultivars showed distinctive metabolomics profiles, with 'Opal' and 'Istar' being the most valuable hybrids. The 3-hydroxyphenyl-valeric acid (a medium-chain fatty acid) and the 6-Gingesulfonic acid (a methoxyphenol) were the most discriminant markers. Our findings illustrated the quantitative and qualitative variation of several classes of phytochemicals in seed-propagated artichoke cultivars and allowed identifying distinctive metabolic signatures for both phenolic compounds and sesquiterpene lactones. This work supports the exploitation of the artichoke leaves from hybrid cultivars as a rich source of bioactive phytochemicals.
Keywords: Cynara cardunculus; UHPLC-QTOF; metabolomics; multivariate statistics; polyphenols; sesquiterpenoids.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Zayed A., Serag A., Farag M.A. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J. Funct. Foods. 2020;69:103937. doi: 10.1016/j.jff.2020.103937. - DOI
-
- de Falco B., Incerti G., Amato M., Lanzotti V. Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phytochem. Rev. 2015;14:993–1018. doi: 10.1007/s11101-015-9428-y. - DOI
-
- Lattanzio V., Kroon P.A., Linsalata V., Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods. 2009;1:131–144. doi: 10.1016/j.jff.2009.01.002. - DOI
-
- Gostin A.I., Waisundara V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.) Trends Food Sci. Technol. 2019;86:381–391. doi: 10.1016/j.tifs.2019.02.015. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical