Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 16;12(37):41896-41904.
doi: 10.1021/acsami.0c12868. Epub 2020 Sep 2.

Flexible Capacitive Humidity Sensors Based on Ionic Conductive Wood-Derived Cellulose Nanopapers

Affiliations

Flexible Capacitive Humidity Sensors Based on Ionic Conductive Wood-Derived Cellulose Nanopapers

Yan Wang et al. ACS Appl Mater Interfaces. .

Abstract

With the growing requirements for the renewability and sustainability of electronic products, environmentally friendly cellulose-based materials have attracted immense research interests and gained increasing prominence for electronic devices. Humidity sensors play an essential role in industries, agriculture, climatology, medical services, and daily life. Here, for the first time, we fabricate capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers (WCNs). The WCN-based humidity sensors exhibited ultrahigh sensitivity, fast response, small hysteresis, and more importantly, a wide working range of relative humidity (RH). The sensors showed >104 times increase in the sensing signal over the 7-94% RH range at 20 Hz, while many reported humidity sensors with high sensitivity often have the working range limited to high RH levels. Our sensors can realize the distinction of nuances in humidity and exhibit outstanding noncontact skin humidity sensing properties. Flexible WCN-based humidity sensors were also fabricated, and they displayed excellent sensing properties with long-time stability, endowing them with multifunctional applications. The contrast humidity sensing experiment compared to the existing commercial humidity sensor further demonstrated the higher and faster response of our WCN-based sensors. Thus, this work provides effective guidance for the design of high-performance humidity sensors using nanopapers and opens a new dimension for a variety of future applications.

Keywords: capacitive; flexible; humidity sensors; ionic conductive; wood-derived cellulose nanopapers.

PubMed Disclaimer

LinkOut - more resources