The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19
- PMID: 32834625
- PMCID: PMC7341958
- DOI: 10.1016/j.chaos.2020.110090
The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19
Abstract
In this article, we propose the Susceptible-Unidentified infected-Confirmed (SUC) epidemic model for estimating the unidentified infected population for coronavirus disease 2019 (COVID-19) in China. The unidentified infected population means the infected but not identified people. They are not yet hospitalized and still can spread the disease to the susceptible. To estimate the unidentified infected population, we find the optimal model parameters which best fit the confirmed case data in the least-squares sense. Here, we use the time series data of the confirmed cases in China reported by World Health Organization. In addition, we perform the practical identifiability analysis of the proposed model using the Monte Carlo simulation. The proposed model is simple but potentially useful in estimating the unidentified infected population to monitor the effectiveness of interventions and to prepare the quantity of protective masks or COVID-19 diagnostic kit to supply, hospital beds, medical staffs, and so on. Therefore, to control the spread of the infectious disease, it is essential to estimate the number of the unidentified infected population. The proposed SUC model can be used as a basic building block mathematical equation for estimating unidentified infected population.
Keywords: COVID-19; Epidemic model; Least-squares fitting.
© 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Novel Coronavirus (2019-nCoV) situation reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situatio....
LinkOut - more resources
Full Text Sources
