Dynamics of a fractional order mathematical model for COVID-19 epidemic
- PMID: 32834820
- PMCID: PMC7427275
- DOI: 10.1186/s13662-020-02873-w
Dynamics of a fractional order mathematical model for COVID-19 epidemic
Abstract
In this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class), Q (isolated class), and R (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied. Firstly, positivity and boundedness of the model are established. Secondly, the basic reproduction number of the model is calculated by using the next generation matrix approach. Then, asymptotic stability of the model is investigated. Lastly, we apply the adaptive predictor-corrector algorithm and fourth-order Runge-Kutta (RK4) method to simulate the proposed model. Consequently, a set of numerical simulations are performed to support the validity of the theoretical results. The numerical simulations indicate that there is a good agreement between theoretical results and numerical ones.
Keywords: Adaptive predictor–corrector algorithm; COVID-19 epidemic; Fractional differential equations; Numerical simulations; Stability analysis.
© The Author(s) 2020.
Conflict of interest statement
Competing interestsThe authors declare that there is no conflict of interest regarding the publication of this paper.
Figures










Similar articles
-
A fractional-order mathematical model for analyzing the pandemic trend of COVID-19.Math Methods Appl Sci. 2022 May 30;45(8):4625-4642. doi: 10.1002/mma.8057. Epub 2021 Dec 29. Math Methods Appl Sci. 2022. PMID: 35464830 Free PMC article.
-
Hepatitis C virus fractional-order model: mathematical analysis.Model Earth Syst Environ. 2023;9(2):1695-1707. doi: 10.1007/s40808-022-01582-5. Epub 2022 Nov 2. Model Earth Syst Environ. 2023. PMID: 36345473 Free PMC article.
-
A case study of Covid-19 epidemic in India via new generalised Caputo type fractional derivatives.Math Methods Appl Sci. 2021 Feb 17:10.1002/mma.7284. doi: 10.1002/mma.7284. Online ahead of print. Math Methods Appl Sci. 2021. PMID: 33821068 Free PMC article.
-
Prediction and mathematical analysis of the outbreak of coronavirus (COVID-19) in Bangladesh.Results Appl Math. 2021 May;10:100145. doi: 10.1016/j.rinam.2021.100145. Epub 2021 Feb 13. Results Appl Math. 2021. PMID: 38620615 Free PMC article.
-
Stability analysis of a nonlocal SIHRDP epidemic model with memory effects.Nonlinear Dyn. 2022;109(1):121-141. doi: 10.1007/s11071-022-07286-w. Epub 2022 Feb 23. Nonlinear Dyn. 2022. PMID: 35221527 Free PMC article. Review.
Cited by
-
Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay.Theory Biosci. 2022 Nov;141(4):365-374. doi: 10.1007/s12064-022-00379-5. Epub 2022 Oct 3. Theory Biosci. 2022. PMID: 36190645 Free PMC article.
-
Dynamical behaviour of single photobioreactor with variable yield coefficient.Heliyon. 2022 Dec 10;8(12):e12187. doi: 10.1016/j.heliyon.2022.e12187. eCollection 2022 Dec. Heliyon. 2022. PMID: 36590535 Free PMC article.
-
A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19.Chaos Solitons Fractals. 2021 Feb;143:110632. doi: 10.1016/j.chaos.2020.110632. Epub 2021 Jan 10. Chaos Solitons Fractals. 2021. PMID: 33519121 Free PMC article.
-
Mathematical model for the novel coronavirus (2019-nCOV) with clinical data using fractional operator.Numer Methods Partial Differ Equ. 2022 Sep 12:10.1002/num.22915. doi: 10.1002/num.22915. Online ahead of print. Numer Methods Partial Differ Equ. 2022. PMID: 36245569 Free PMC article.
-
Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus.Eur Phys J Plus. 2023;138(3):280. doi: 10.1140/epjp/s13360-023-03881-x. Epub 2023 Mar 26. Eur Phys J Plus. 2023. PMID: 37008752 Free PMC article.
References
-
- Atangana A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals. 2017;102:396–406. doi: 10.1016/j.chaos.2017.04.027. - DOI
-
- Atangana A. Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals. 2018;114:347–363. doi: 10.1016/j.chaos.2018.07.022. - DOI
-
- Atangana A. Fractional discretization: the African’s tortoise walk. Chaos Solitons Fractals. 2020;130:109399. doi: 10.1016/j.chaos.2019.109399. - DOI
Publication types
LinkOut - more resources
Full Text Sources