Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov's complexity and Shannon's information theories
- PMID: 32836811
- PMCID: PMC7335223
- DOI: 10.1007/s11071-020-05771-8
Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov's complexity and Shannon's information theories
Abstract
This paper tackles the information of 133 RNA viruses available in public databases under the light of several mathematical and computational tools. First, the formal concepts of distance metrics, Kolmogorov complexity and Shannon information are recalled. Second, the computational tools available presently for tackling and visualizing patterns embedded in datasets, such as the hierarchical clustering and the multidimensional scaling, are discussed. The synergies of the common application of the mathematical and computational resources are then used for exploring the RNA data, cross-evaluating the normalized compression distance, entropy and Jensen-Shannon divergence, versus representations in two and three dimensions. The results of these different perspectives give extra light in what concerns the relations between the distinct RNA viruses.
Keywords: COVID-19; Hierarchical clustering; Kolmogorov complexity theory; Multidimensional scaling; Shannon information theory.
© Springer Nature B.V. 2020.
Conflict of interest statement
Conflict of interestThe authors declare that they have no conflict of interest.
Figures










Similar articles
-
Advances in the computational analysis of SARS-COV2 genome.Nonlinear Dyn. 2021;106(2):1525-1555. doi: 10.1007/s11071-021-06836-y. Epub 2021 Aug 27. Nonlinear Dyn. 2021. PMID: 34465942 Free PMC article.
-
Cancer biomarker discovery: the entropic hallmark.PLoS One. 2010 Aug 18;5(8):e12262. doi: 10.1371/journal.pone.0012262. PLoS One. 2010. PMID: 20805891 Free PMC article.
-
Methods of information theory and algorithmic complexity for network biology.Semin Cell Dev Biol. 2016 Mar;51:32-43. doi: 10.1016/j.semcdb.2016.01.011. Epub 2016 Jan 21. Semin Cell Dev Biol. 2016. PMID: 26802516 Review.
-
Information Theory in Computational Biology: Where We Stand Today.Entropy (Basel). 2020 Jun 6;22(6):627. doi: 10.3390/e22060627. Entropy (Basel). 2020. PMID: 33286399 Free PMC article.
-
A Review of Graph and Network Complexity from an Algorithmic Information Perspective.Entropy (Basel). 2018 Jul 25;20(8):551. doi: 10.3390/e20080551. Entropy (Basel). 2018. PMID: 33265640 Free PMC article. Review.
Cited by
-
Zgli: A Pipeline for Clustering by Compression with Application to Patient Stratification in Spondyloarthritis.Sensors (Basel). 2023 Jan 20;23(3):1219. doi: 10.3390/s23031219. Sensors (Basel). 2023. PMID: 36772258 Free PMC article.
-
Advances in the computational analysis of SARS-COV2 genome.Nonlinear Dyn. 2021;106(2):1525-1555. doi: 10.1007/s11071-021-06836-y. Epub 2021 Aug 27. Nonlinear Dyn. 2021. PMID: 34465942 Free PMC article.
-
New applications related to Covid-19.Results Phys. 2021 Jan;20:103663. doi: 10.1016/j.rinp.2020.103663. Epub 2020 Dec 19. Results Phys. 2021. PMID: 33362986 Free PMC article.
-
In memory of Professor José António Tenreiro Machado (1957-2021).Nonlinear Dyn. 2022;107(3):1791-1800. doi: 10.1007/s11071-021-07162-z. Epub 2022 Jan 5. Nonlinear Dyn. 2022. PMID: 35002077 Free PMC article. No abstract available.
-
Complexity of COVID-19 Dynamics.Entropy (Basel). 2021 Dec 27;24(1):50. doi: 10.3390/e24010050. Entropy (Basel). 2021. PMID: 35052076 Free PMC article.
References
-
- Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit M, Munday JD, Davies N, Gimma A, van Zandvoort K, Gibbs H, Hellewell J, Jarvis CI, Clifford S, Quilty BJ, Bosse NI, Abbott S, Klepac P, Flasche S. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. 2020 doi: 10.1016/s1473-3099(20)30144-4. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous