Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 1;205(5):1189-1197.
doi: 10.4049/jimmunol.2000439.

Damage-Associated Molecular Patterns and the Systemic Immune Consequences of Severe Thermal Injury

Affiliations
Review

Damage-Associated Molecular Patterns and the Systemic Immune Consequences of Severe Thermal Injury

Paul B Comish et al. J Immunol. .

Abstract

Thermal injury is often associated with a proinflammatory state resulting in serious complications. After a burn, the innate immune system is activated with subsequent immune cell infiltration and cytokine production. Although the innate immune response is typically beneficial, an excessive activation leads to cytokine storms, multiple organ failure, and even death. This overwhelming immune response is regulated by damage-associated molecular patterns (DAMPs). DAMPs are endogenous molecules that are actively secreted by immune cells or passively released by dead or dying cells that can bind to pathogen recognition receptors in immune and nonimmune cells. Recent studies involving animal models along with human studies have drawn great attention to the possible pathological role of DAMPs as an immune consequence of thermal injury. In this review, we outline DAMPs and their function in thermal injury, shedding light on the mechanism of sterile inflammation during tissue injury and identifying new immune targets for treating thermal injury.

PubMed Disclaimer

LinkOut - more resources