Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct;16(10):575-585.
doi: 10.1038/s41582-020-0390-y. Epub 2020 Aug 24.

Artificial intelligence for decision support in acute stroke - current roles and potential

Affiliations
Review

Artificial intelligence for decision support in acute stroke - current roles and potential

Andrew Bivard et al. Nat Rev Neurol. 2020 Oct.

Abstract

The identification and treatment of patients with stroke is becoming increasingly complex as more treatment options become available and new relationships between disease features and treatment response are continually discovered. Consequently, clinicians must constantly learn new skills (such as clinical evaluations or image interpretation), stay up to date with the literature and incorporate advances into everyday practice. The use of artificial intelligence (AI) to support clinical decision making could reduce inter-rater variation in routine clinical practice and facilitate the extraction of vital information that could improve identification of patients with stroke, prediction of treatment responses and patient outcomes. Such support systems would be ideal for centres that deal with few patients with stroke or for regional hubs, and could assist informed discussions with the patients and their families. Moreover, the use of AI for image processing and interpretation in stroke could provide any clinician with an imaging assessment equivalent to that of an expert. However, any AI-based decision support system should allow for expert clinician interaction to enable identification of errors (for example, in automated image processing). In this Review, we discuss the increasing importance of imaging in stroke management before exploring the potential and pitfalls of AI-assisted treatment decision support in acute stroke.

PubMed Disclaimer

References

    1. Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016). An excellent meta-analysis of thrombectomy trials that demonstrates a very large treatment effect. - DOI
    1. Potter, C. A. et al. CT for treatment selection in acute ischemic stroke: a code stroke primer. Radiographics 39, 6 (2019).
    1. Sanelli, P. C. et al. Imaging and treatment of patients with acute stroke: an evidence-based review. Am. J. Neuroradiol. 35, 1045–1051 (2014). - PubMed
    1. Bacharach, R., Niazi, M. & Ermak, D. Pitfalls of CT perfusion imaging in acute ischemic stroke: a case series. Neurology 90 (Suppl. 15), P3.206 (2018).
    1. Adeoye, O. et al. Recommendations for the establishment of stroke systems of care: a 2019 update. A policy statement from the American Stroke Association. Stroke 50, e187–e210 (2019). - PubMed

MeSH terms