Conventional MRI features of adult diffuse glioma molecular subtypes: a systematic review
- PMID: 32840682
- DOI: 10.1007/s00234-020-02532-7
Conventional MRI features of adult diffuse glioma molecular subtypes: a systematic review
Abstract
Purpose: Molecular parameters have become integral to glioma diagnosis. Much of radiogenomics research has focused on the use of advanced MRI techniques, but conventional MRI sequences remain the mainstay of clinical assessments. The aim of this research was to synthesize the current published data on the accuracy of standard clinical MRI for diffuse glioma genotyping, specifically targeting IDH and 1p19q status.
Methods: A systematic search was performed in September 2019 using PubMed and the Cochrane Library, identifying studies on the diagnostic value of T1 pre-/post-contrast, T2, FLAIR, T2*/SWI and/or 3-directional diffusion-weighted imaging sequences for the prediction of IDH and/or 1p19q status in WHO grade II-IV diffuse astrocytic and oligodendroglial tumours as defined in the WHO 2016 Classification of CNS Tumours.
Results: Forty-four studies including a total of 5286 patients fulfilled the inclusion criteria. Correlations between key glioma molecular markers, namely IDH and 1p19q, and distinctive MRI findings have been established, including tumour location, signal composition (including the T2-FLAIR mismatch sign) and apparent diffusion coefficient values.
Conclusion: Consistent trends have emerged indicating that conventional MRI is valuable for glioma genotyping, particularly in presumed lower grade glioma. However, due to limited interobserver testing, the reproducibility of qualitatively assessed visual features remains an area of uncertainty.
Keywords: Glioblastoma; Glioma; Imaging genomics; Magnetic resonance imaging; Radiogenomics.
References
-
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1 - DOI
-
- Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710 - DOI - PubMed - PMC
-
- Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, von Deimling A, Weller M (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136(5):805–810. https://doi.org/10.1007/s00401-018-1913-0 - DOI - PubMed - PMC
-
- Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent A, Dubbink HJ, Atmodimedjo PN, Kros JM, van Duinen SG, Smits M, Taphoorn MJB, French PJ, van den Bent MJ (2019) Survival of diffuse astrocytic glioma, IDH1/2-wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro-Oncology 22:515–523. https://doi.org/10.1093/neuonc/noz200 - DOI
-
- Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, Nelson SJ, Gerstner E, Alexander B, Goldmacher G, Wick W, Vogelbaum M, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Pope WB, Yang D, Chung C, Knopp MV, Cha S, van den Bent MJ, Chang S, Yung WK, Cloughesy TF, Wen PY, Gilbert MR (2015) Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncology 17(9):1188–1198. https://doi.org/10.1093/neuonc/nov095 - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
