Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Dec:60:183-194.
doi: 10.1016/j.jcrc.2020.08.003. Epub 2020 Aug 7.

What factors predict length of stay in the intensive care unit? Systematic review and meta-analysis

Affiliations
Meta-Analysis

What factors predict length of stay in the intensive care unit? Systematic review and meta-analysis

Igor Tona Peres et al. J Crit Care. 2020 Dec.

Abstract

Purpose: Studies have shown that a small percentage of ICU patients have prolonged length of stay (LoS) and account for a large proportion of resource use. Therefore, the identification of prolonged stay patients can improve unit efficiency. In this study, we performed a systematic review and meta-analysis to understand the risk factors of ICU LoS.

Materials and methods: We searched MEDLINE, Embase and Scopus databases from inception to November 2018. The searching process focused on papers presenting risk factors of ICU LoS. A meta-analysis was performed for studies reporting appropriate statistics.

Results: From 6906 citations, 113 met the eligibility criteria and were reviewed. A meta-analysis was performed for six factors from 28 papers and concluded that patients with mechanical ventilation, hypomagnesemia, delirium, and malnutrition tend to have longer stay, and that age and gender were not significant factors.

Conclusions: This work suggested a list of risk factors that should be considered in prediction models for ICU LoS, as follows: severity scores, mechanical ventilation, hypomagnesemia, delirium, malnutrition, infection, trauma, red blood cells, and PaO2:FiO2. Our findings can be used by prediction models to improve their predictive capacity of prolonged stay patients, assisting in resource allocation, quality improvement actions, and benchmarking analysis.

Keywords: Intensive care unit; Length of stay; Meta-analysis; Predictors; Prognostic factors; Systematic literature review.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None declared.

Publication types