Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988;13(3):149-60.

Materials aspects of implantable cardiac pacemaker leads

Affiliations
  • PMID: 3285160
Review

Materials aspects of implantable cardiac pacemaker leads

S D Bruck et al. Med Prog Technol. 1988.

Abstract

The reliability of the leads of the entire pacemaker system is vital as the risks of failure include: (1) loss of pacing due to the deterioration of the polymeric insulator in the physiological environment; (2) thromboembolism due to inadequate blood compatibility of the insulator; (3) tissue reactions at the electrode/tissue interface; (4) general foreign body rejection phenomena; (5) perforation of the leads; and (6) excessive stress applied by sutures causing abrasion and stress cracking. Although silicone has been used widely, some years ago Pellethane (a segmented polyetherurethane-urea) has been introduced as an alternate lead insulator, chiefly because it can be extruded using additives into smooth and thin tubes. The additives (antioxidants), extrusion aids, and low molecular weight polymer chains (oligomers) together represent up to approximately 8% by weight of leachables, depending on the extraction medium. The in vivo degradation of Pellethane is biologic in nature and is most likely associated with the absorption and premeation of body fluids from the surrounding physiologic environment leading to stress cracking via the formation of microvoids. Thermally and biologically unstable biuret and allophonate groups in this polyurethane, exposure of the polymer to high extrusion temperatures, and stresses created within the polymer also play key roles in the degradation process. In the case of electrodes, some corrosion can occur even with noble metals and ions formed with the involvement of penetrating body fluids which may combine with the urethane and/or urea groups of the polyurethane, leading to its further degradation in vivo. The totality of the situation indicates a need for the development of a standard guideline for the uniform and consistent pre-clinical testing and evaluation of new materials and fabrication processes of implantable pacemaker leads. Such guidelines should take into consideration, among others, the physiological environment, species-differences between test animals and humans, and observe reliable statistical interpretations based on sufficient data.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources