Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;34(10):13239-13256.
doi: 10.1096/fj.202000492R. Epub 2020 Aug 26.

Novel metabolic system for lactic acid via LRPGC1/ERRγ signaling pathway

Affiliations

Novel metabolic system for lactic acid via LRPGC1/ERRγ signaling pathway

Takashi Tanida et al. FASEB J. 2020 Oct.

Abstract

Lactic acid (LA) is a byproduct of glycolysis resulting from intense exercise or a metabolic defect in aerobic processes. LA metabolism is essential to prevent lactic acidosis, but the mechanism through which LA regulates its own metabolism is largely unknown. Here, we identified a LA-responsive protein, named LRPGC1, which has a distinct role from PGC1α, a key metabolic regulator, and report that LRPGC1 particularly mediates LA response to activate liver LA metabolism. Following LA stimulation, LRPGC1, but not PGC1α, translocates from the cytoplasm to the nucleus through deactivation of nuclear export signals, interacts with the nuclear receptor ERRγ, and upregulates TFAM, which ensures mitochondrial biogenesis. Knockout of PGC1 gene in HepG2 hepatocarcinoma cells decreased the LA consumption and TFAM expression, which were rescued by LRPGC1 expression, but not by PGC1α. These LRPGC1-induced effects were mediated by ERRγ, concomitantly with mitochondrial activation. The response element for LRPGC1/ERRγ signaling pathway was identified in TFAM promoter. Notably, the survival rate of a mouse model of lactic acidosis was reduced by the liver-targeted silencing of Lrpgc1, while it was significantly ameliorated by the pharmacological activation of ERRγ. These findings demonstrate LA-responsive transactivation via LRPGC1 that highlight an intrinsic molecular mechanism for LA homeostasis.

Keywords: ERRγ; LRPGC1; TFAM; lactic acid; nuclear translocation.

PubMed Disclaimer

References

REFERENCES

    1. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88:1127-1140.
    1. Kraut JA, Madias NE. Lactic acidosis. N England J Med. 2014;371:2309-2319.
    1. Kalimo H, Rehncrona S, Soderfeldt B, Olsson Y, Siesjo BK. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metabol. 1981;1:313-327.
    1. Bailey CJ, Turner RC. Metformin. N England J Med. 1996;334:574-579.
    1. del Portal DA, Shofer F, Mikkelsen ME, et al. Emergency department lactate is associated with mortality in older adults admitted with and without infections. Acad Emerg Med. 2010;17:260-268.

Publication types

MeSH terms

Substances

LinkOut - more resources