Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct;27(5):329-337.
doi: 10.1097/MEJ.0000000000000691.

Acute hyperkalemia in the emergency department: a summary from a Kidney Disease: Improving Global Outcomes conference

Affiliations
Review

Acute hyperkalemia in the emergency department: a summary from a Kidney Disease: Improving Global Outcomes conference

Gregor Lindner et al. Eur J Emerg Med. 2020 Oct.

Abstract

Hyperkalemia is a common electrolyte disorder observed in the emergency department. It is often associated with underlying predisposing conditions, such as moderate or severe kidney disease, heart failure, diabetes mellitus, or significant tissue trauma. Additionally, medications, such as inhibitors of the renin-angiotensin-aldosterone system, potassium-sparing diuretics, nonsteroidal anti-inflammatory drugs, succinylcholine, and digitalis, are associated with hyperkalemia. To this end, Kidney Disease: Improving Global Outcomes (KDIGO) convened a conference in 2018 to identify evidence and address controversies on potassium management in kidney disease. This review summarizes the deliberations and clinical guidance for the evaluation and management of acute hyperkalemia in this setting. The toxic effects of hyperkalemia on the cardiac conduction system are potentially lethal. The ECG is a mainstay in managing hyperkalemia. Membrane stabilization by calcium salts and potassium-shifting agents, such as insulin and salbutamol, is the cornerstone in the acute management of hyperkalemia. However, only dialysis, potassium-binding agents, and loop diuretics remove potassium from the body. Frequent reevaluation of potassium concentrations is recommended to assess treatment success and to monitor for recurrence of hyperkalemia.

PubMed Disclaimer

Conflict of interest statement

G.L. received consultant fees and honoraria from Bayer, Fresenius Kabi, and Otsuka; travel grants from GlaxoSmithKline, Otsuka, and Pierre Fabre. C.M.C. has received consultation, advisory board membership, or research funding from Amgen, Astellas, Baxter, Boehringer Ingelheim, Janssen, Johnson & Johnson, LEO Pharma, Pfizer, and Ministry of Health Ontario; and speaker honoraria from Sanofi. C.A.H. received consultant fees from AbbVie, Amgen, AstraZeneca, Corvidia, FibroGen, Janssen, Pfizer, Relypsa, Sanifit, and University of Oxford; received research grants from Amgen, Relypsa, University of British Columbia, and Zoll; honoraria from UpToDate and is a stock-holder of Boston Scientific, Bristol-Myers Squibb, General Electric, Johnson & Johnson, and Merck. R.P.-F. received consultant fees and speaker honorarium from Akebia, AstraZeneca, Fresenius Medical Care, Novo Nordisk; speaker honoraria from AstraZeneca and Novo Nordisk; and research support from Fresenius Medical Care. Z.R. has received grants and consulting fees from Relypsa and ZS Pharma. P.R. has received consultant fees from Ablative Solutions, AstraZeneca, Bayer, Boehringer Ingelheim, Corvidia, CVRx, Fresenius, G3P, Grunenthal, Idorsia, Novartis, Novo Nordisk, Relypsa, Servier, Stealth Peptides, Vifor Fresenius Medical Care Renal Pharma. He is also a co-founder of CardioRenal. A.J.S. has received research grants and consulting fees from AstraZeneca, Bristol-Myers Squibb, Janssen, Pfizer, Portola, and Relypsa. There are no conflicts of interest for the remaining authors.

Figures

Fig. 1
Fig. 1
Severity of acute hyperkalemia: expert opinion based risk classification. Reproduced with permission [1].
Fig. 2
Fig. 2
Typical ECG changes associated with hyperkalemia. It is important to note that ECG changes may not correlate closely with serum potassium concentration or be useful in predicting outcomes. As such, a normal ECG should not necessarily be regarded as reassuring if elevated potassium concentration has been definitively observed. Such patients may still experience sudden hyperkalemic cardiac arrest episodes. Reproduced with permission [48].
Fig. 3
Fig. 3
Treatment algorithm for management of acute hyperkalemia in the emergency department. The thresholds for actions are opinion based. Suggested drug doses are based on a 2010 systematic review [80] and a subsequent observational study [81]. ECG changes commonly reported with increasing potassium concentrations have been described in the literature [,–42,82]. *IV 3 times 1 g calcium gluconate (3 × 10 ml of 10% solution, each containing 93 mg elemental calcium, 2.3 mmol; total 279 mg elemental calcium, 6.9 mmol) or 1 g calcium chloride (10 ml of 10% solution, 273 mg elemental calcium, 6.8 mmol) †IV regular insulin 5 units plus 25 g glucose (50 ml of 50%) is as effective as albuterol (salbutamol) 10 mg nebulized; insulin and albuterol may have an additive effect. Beware of hypoglycemia. §IV bicarbonate (1 amp of 50 ml of 8.4% solution, Na+ 50 mmol, HCO3 50 mmol) over 15 min. **Potassium binders: sodium polystyrene sulphonate (SPS) 15–60 g po/pr (do not give with sorbitol) or sodium zirconium cyclosilicate 10 g 3×/d po (patiromer not advisable as onset of action is 7 h). This guidance is suggestive as there are limited data on onset of action with no head-to-head studies between potassium binders. ‡Hemodialysis is the modality of preference. AKI, acute kidney injury; CKD, chronic kidney disease; ECG, electrocardiogram; ESKD, end-stage kidney disease; GFR, glomerular filtration rate; IV, intravenous; K+, potassium; VF, ventricular fibrillation. Reproduced with permission [1].

Similar articles

Cited by

References

    1. Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, et al. ; Conference Participants. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020; 97:42–61 - PubMed
    1. Truhlář A, Deakin CD, Soar J, Khalifa GE, Alfonzo A, Bierens JJ, et al. ; Cardiac arrest in special circumstances section Collaborators. European resuscitation council guidelines for resuscitation 2015: section 4. Cardiac arrest in special circumstances. Resuscitation. 2015; 95:148–201 - PubMed
    1. http://www.acb.org.uk/Nat%20Lab%20Med%20Hbk/Potassium.pdf. [Accessed 12 March, 2020]
    1. Hartland AJ, Neary RH. Serum potassium is unreliable as an estimate of in vivo plasma potassium. Clin Chem. 1999; 45:1091–1092 - PubMed
    1. Cooper LB, Savarese G, Carrero JJ, Szabo B, Jernberg T, Jonsson Å, et al. Clinical and research implications of serum versus plasma potassium measurements. Eur J Heart Fail. 2019; 21:536–537 - PubMed