Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 28;369(6507):1094-1098.
doi: 10.1126/science.abb6310.

A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis

Affiliations

A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis

Justin A North et al. Science. .

Abstract

Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.

PubMed Disclaimer

Publication types