Expanding the space of protein geometries by computational design of de novo fold families
- PMID: 32855341
- PMCID: PMC7787817
- DOI: 10.1126/science.abc0881
Expanding the space of protein geometries by computational design of de novo fold families
Abstract
Naturally occurring proteins vary the precise geometries of structural elements to create distinct shapes optimal for function. We present a computational design method, loop-helix-loop unit combinatorial sampling (LUCS), that mimics nature's ability to create families of proteins with the same overall fold but precisely tunable geometries. Through near-exhaustive sampling of loop-helix-loop elements, LUCS generates highly diverse geometries encompassing those found in nature but also surpassing known structure space. Biophysical characterization showed that 17 (38%) of 45 tested LUCS designs encompassing two different structural topologies were well folded, including 16 with designed non-native geometries. Four experimentally solved structures closely matched the designs. LUCS greatly expands the designable structure space and offers a new paradigm for designing proteins with tunable geometries that may be customizable for novel functions.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Conflict of interest statement
Competing interests:
The authors declare no competing interests.
Figures




Similar articles
-
De novo protein fold families expand the designable ligand binding site space.PLoS Comput Biol. 2021 Nov 22;17(11):e1009620. doi: 10.1371/journal.pcbi.1009620. eCollection 2021 Nov. PLoS Comput Biol. 2021. PMID: 34807909 Free PMC article.
-
Control over overall shape and size in de novo designed proteins.Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5478-85. doi: 10.1073/pnas.1509508112. Epub 2015 Sep 22. Proc Natl Acad Sci U S A. 2015. PMID: 26396255 Free PMC article.
-
A generic framework for hierarchical de novo protein design.Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2206111119. doi: 10.1073/pnas.2206111119. Epub 2022 Oct 17. Proc Natl Acad Sci U S A. 2022. PMID: 36252041 Free PMC article.
-
Advances in computational protein design.Curr Opin Struct Biol. 2004 Aug;14(4):487-94. doi: 10.1016/j.sbi.2004.06.002. Curr Opin Struct Biol. 2004. PMID: 15313244 Review.
-
Advances in design of protein folds and assemblies.Curr Opin Chem Biol. 2017 Oct;40:65-71. doi: 10.1016/j.cbpa.2017.06.020. Epub 2017 Jul 11. Curr Opin Chem Biol. 2017. PMID: 28709120 Review.
Cited by
-
Accurate Machine Learning Prediction of Protein Circular Dichroism Spectra with Embedded Density Descriptors.JACS Au. 2021 Nov 25;1(12):2377-2384. doi: 10.1021/jacsau.1c00449. eCollection 2021 Dec 27. JACS Au. 2021. PMID: 34977905 Free PMC article.
-
Recent advances in de novo protein design: Principles, methods, and applications.J Biol Chem. 2021 Jan-Jun;296:100558. doi: 10.1016/j.jbc.2021.100558. Epub 2021 Mar 18. J Biol Chem. 2021. PMID: 33744284 Free PMC article. Review.
-
Sampling of structure and sequence space of small protein folds.Nat Commun. 2022 Nov 22;13(1):7151. doi: 10.1038/s41467-022-34937-8. Nat Commun. 2022. PMID: 36418330 Free PMC article.
-
An improved model for prediction of de novo designed proteins with diverse geometries.bioRxiv [Preprint]. 2025 Jun 6:2025.06.02.657515. doi: 10.1101/2025.06.02.657515. bioRxiv. 2025. PMID: 40502157 Free PMC article. Preprint.
-
Deep learning guided design of dynamic proteins.bioRxiv [Preprint]. 2024 Jul 19:2024.07.17.603962. doi: 10.1101/2024.07.17.603962. bioRxiv. 2024. Update in: Science. 2025 May 22;388(6749):eadr7094. doi: 10.1126/science.adr7094. PMID: 39071443 Free PMC article. Updated. Preprint.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials