Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 May;11(5):365-76.
doi: 10.1016/s0272-6386(88)80048-9.

Renal osteodystrophy: some new questions on an old disorder

Affiliations
Review

Renal osteodystrophy: some new questions on an old disorder

D B Lee et al. Am J Kidney Dis. 1988 May.

Abstract

The two major lesions of renal osteodystrophy are osteitis fibrosa cystica (OFC) and osteomalacia (OM). OFC is the characteristic bone lesion of uremic hyperparathyroidism. Although renal failure causes predictable parathyroid hyperplasia, the precise pathogenetic mechanism is still not defined. The "hyperphosphatemia-hypocalcemia-parathyroid hormone (PTH) hypersecretion" sequence of events is no longer an adequate model for the pathogenesis of uremic hyperparathyroidism. Other abnormalities associated with uremia include reduced 1,25-dihydroxyvitamin D (1,25D) synthesis, changes in intracellular phosphorus content or transcellular phosphate fluxes, or alteration in PTH metabolism, eg, change in set-point for PTH secretion. Each abnormality interacts with others and contributes to PTH hypersecretion, but none can completely account for the development and persistence of hyperparathyroidism in renal failure. The possibility that uremia may directly cause parathyroid hyperplasia remains open. It is also possible that factor(s) that initiate hyperparathyroidism may turn out to be quite different from that which sustains the hyperparathyroid state. Although both vitamin D-deficient and vitamin D-resistant OM may develop in patients with renal failure, the majority of uremic OM seen currently is "vitamin D-refractory." Although now there is persuasive evidence implicating aluminum (Al) accumulation as the major pathogenetic cause for the mineralization defect seen in this disorder, additional disturbances may play important contributory roles. Such factors would include extraskeletal effects of Al, differences in host-susceptibility to this element, the localization of Al within bone, uremia per se, and the participation of other metals and toxins. Finally, possible interactions between hyperparathyroidism and OM of uremia are speculated on.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources