Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec:191:110092.
doi: 10.1016/j.envres.2020.110092. Epub 2020 Aug 27.

Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology

Affiliations

Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology

Warish Ahmed et al. Environ Res. 2020 Dec.

Abstract

Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.

Keywords: COVID-19; Decay; Enveloped virus; Murine hepatitis virus; SARS-CoV-2; Temperature; Wastewater.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Fig. 1
Fig. 1
Mean decay curves of SARS-CoV-2 and MHV RNA over time (days) in untreated wastewater, autoclaved wastewater and tap water microcosms. The measurements were linearized premised on first-order decay, in which the natural log (ln)-transformed measured concentration at each time point was divided by the concentration at time zero. In some instances, the error bars (SD) are too small to illustrate.
Fig. 2
Fig. 2
Log10-transformed mean first-order decay rate constants (log10k; k in units per day) of SARS-CoV-2 and MHV RNA as observed at 4, 15, 25, and 37 °C in each matrix. Each marker represents one mean log10k value as observed in the current study.

References

    1. Ahmed W., Angel N., Edson J., Bibby K., Bivins A., Brien J.W.O., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., Thomas K.V., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. - PMC - PubMed
    1. Ahmed W., Bertsch M., Bivins A., Bibby K., Farkas K., Gathercole A., Haramoto E., Gyawali P., Korajkic A., McMinn B.R., Mueller J.F., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Kitajima M. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020;739:139960. - PMC - PubMed
    1. Ahmed W., Bertsch P.M., Angel N., Bibby K., Bivins A., Dierens L., Edson J., Ehret J., Gyawali P., Hamilton K., Hosegood I., Hugenholtz P., Jiang G., Kitajima M., Sichani H.T., Shi J., Shimko K.M., Simpson S.L., smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Zaugg J., Mueller J.F. Detection of SARS-CoV-2 RNA in commercial passengers aircraft and cruise wastewater: a surveillance tool for assessing the presence of COVID-19 infected travelers. J. Travel Med. Taaa116. 2020 - PMC - PubMed
    1. Boehm A.B., Silverman A.I., Schriewer A., Goodwin K. Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Res. 2019;164:114898. - PubMed
    1. Besselsen D.G., Wagner A.M., Loganbill J.K. Detection of rodent coronaviruses by use of fluorogenic reverse transcriptase-polymerase chain reaction analysis. Comp. Med. 2002;52(2):111–116. - PubMed

Publication types