Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology
- PMID: 32861728
- PMCID: PMC7451058
- DOI: 10.1016/j.envres.2020.110092
Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology
Abstract
Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.
Keywords: COVID-19; Decay; Enveloped virus; Murine hepatitis virus; SARS-CoV-2; Temperature; Wastewater.
Crown Copyright © 2020. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures


References
-
- Ahmed W., Angel N., Edson J., Bibby K., Bivins A., Brien J.W.O., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., Thomas K.V., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. - PMC - PubMed
-
- Ahmed W., Bertsch M., Bivins A., Bibby K., Farkas K., Gathercole A., Haramoto E., Gyawali P., Korajkic A., McMinn B.R., Mueller J.F., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Kitajima M. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020;739:139960. - PMC - PubMed
-
- Ahmed W., Bertsch P.M., Angel N., Bibby K., Bivins A., Dierens L., Edson J., Ehret J., Gyawali P., Hamilton K., Hosegood I., Hugenholtz P., Jiang G., Kitajima M., Sichani H.T., Shi J., Shimko K.M., Simpson S.L., smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Zaugg J., Mueller J.F. Detection of SARS-CoV-2 RNA in commercial passengers aircraft and cruise wastewater: a surveillance tool for assessing the presence of COVID-19 infected travelers. J. Travel Med. Taaa116. 2020 - PMC - PubMed
-
- Boehm A.B., Silverman A.I., Schriewer A., Goodwin K. Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Res. 2019;164:114898. - PubMed
-
- Besselsen D.G., Wagner A.M., Loganbill J.K. Detection of rodent coronaviruses by use of fluorogenic reverse transcriptase-polymerase chain reaction analysis. Comp. Med. 2002;52(2):111–116. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous