Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 15:276:111245.
doi: 10.1016/j.jenvman.2020.111245. Epub 2020 Aug 30.

Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles

Affiliations

Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles

Qinghui Yu et al. J Environ Manage. .

Abstract

Chromium (Cr) contamination poses serious threats to the environment and human health. Thus, batch and column experiments were performed to investigate hexavalent chromium [Cr (VI)] removal from solution and porous media using nanoscale zerovalent iron nanoparticles (NZVI) stabilized by sodium carboxymethyl cellulose (CMC). Batch experiments indicated that the mass ratio of Fe/CMC = 1, the presence of 150-200 mg L-1 CMC and lower ionic strength led to optimum Cr (VI) removal in aqueous solution. Column experiments demonstrated that Cr (VI) removal was enhanced with decreasing solution pH and increasing CMC-NZVI concentration. The presence of CMC can increase Cr (VI) removal by NZVI in both aqueous solution and porous media by complexation precipitation of Cr (VI) compounds and better dispersion of NZVI. X-ray photoelectron spectroscopy (XPS) analysis revealed that an appropriate amount of CMC supported the redox reaction of Cr (VI) and NZVI. The removal of Cr (VI) through columns was 20.8% and 88.5% under no additional CMC and optimized CMC content, respectively. However, Cr (VI) removal decreased to 64.6% under excessive CMC content. The CMC modified NZVI nanoparticles were characterized by XRD, XPS and TEM techniques. These findings imply that CMC can be used as an effective stabilizer on NZVI which can in turn be applied for the efficient removal of Cr (VI) from industrial wastewater and groundwater.

Keywords: Carboxymethyl cellulose; Column and batch setup; Hexavalent chromium; Iron nanoparticles; Textural characterization.

PubMed Disclaimer

LinkOut - more resources