Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
- PMID: 32862811
- PMCID: PMC7481662
- DOI: 10.1098/rsta.2019.0364
Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
Abstract
Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO3 contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-FeR) in Barents Sea surface sediments. The spatial distribution of fOC-FeR, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Keywords: Arctic Ocean; Barents Sea; carbon cycle; geochemical sediment composition; marine surface sediments; organic carbon bound to reactive iron.
Conflict of interest statement
We declare we have no competing interests.
Figures






Similar articles
-
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862813 Free PMC article.
-
Benthic phosphorus cycling within the Eurasian marginal sea ice zone.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190358. doi: 10.1098/rsta.2019.0358. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862806 Free PMC article.
-
Variation in zoobenthic blue carbon in the Arctic's Barents Sea shelf sediments.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190362. doi: 10.1098/rsta.2019.0362. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862809 Free PMC article.
-
Terrestrial inputs of nutrients and dissolved organic carbon to the Arctic Ocean and their influence on primary production.Mar Environ Res. 2025 Aug;209:107182. doi: 10.1016/j.marenvres.2025.107182. Epub 2025 Apr 25. Mar Environ Res. 2025. PMID: 40306045 Review.
-
A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere.Ambio. 2017 Feb;46(Suppl 1):53-69. doi: 10.1007/s13280-016-0872-8. Ambio. 2017. PMID: 28116680 Free PMC article. Review.
Cited by
-
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862813 Free PMC article.
-
The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200266. doi: 10.1098/rsta.2020.0266. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862816 Free PMC article. No abstract available.
-
Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework.Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190359. doi: 10.1098/rsta.2019.0359. Epub 2020 Aug 31. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32862804 Free PMC article.
-
Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem.Ambio. 2022 Feb;51(2):370-382. doi: 10.1007/s13280-021-01638-3. Epub 2021 Oct 9. Ambio. 2022. PMID: 34628602 Free PMC article.
-
Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments.Nat Commun. 2021 Jan 12;12(1):275. doi: 10.1038/s41467-020-20550-0. Nat Commun. 2021. PMID: 33436568 Free PMC article.
References
-
- Meier WN, et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217. (10.1002/2013RG000431) - DOI
-
- Fetterer F, Knowles K, Meier WN, Savoie M, Windnagel AK. 2017. Sea Ice Index, Version 3. Boulder, CO: NSIDC: National Snow and Ice Data Center.
-
- Smedsrud LH, et al. 2013. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 51, 415–449. (10.1002/rog.20017) - DOI
-
- Loeng H. 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Res. 10, 5–18. (10.3402/polar.v10i1.6723) - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources