Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 28:20:415.
doi: 10.1186/s12935-020-01378-6. eCollection 2020.

LncRNA TTN-AS1 promotes the progression of oral squamous cell carcinoma via miR-411-3p/NFAT5 axis

Affiliations

LncRNA TTN-AS1 promotes the progression of oral squamous cell carcinoma via miR-411-3p/NFAT5 axis

Su-Wei Fu et al. Cancer Cell Int. .

Abstract

Background: Oral squamous cell carcinoma (OSCC) is a common kind of squamous cell carcinoma of the head and neck, which is a threat to public health. Long noncoding RNAs (lncRNAs) are associated with the development of various diseases, including cancers. LncRNA titin antisense RNA 1 (TTN-AS1) is known as a crucial regulatory factor in several cancers. Nevertheless, the specific functions of TTN-AS1 in OSCC remains obscure.

Methods: The expression of TTN-AS1 in OSCC samples or cells was analyzed through qRT-PCR. Colony formation assay, EdU assay, flow cytometry assay, TUNEL assay and wound healing assay were conducted to estimate the functions of TTN-AS1 in OSCC cells. RIP and luciferase reporter assays were utilized to detect the interaction between TTN-AS1 and miR-411-3p as well as between miR-411-3p and NFAT5.

Results: TTN-AS1 expression was stronger in OSCC cells. Knockdown of TTN-AS1 effectively restrained cell proliferation and migration but had inductive role in apoptosis. Moreover, TTN-AS1 could function as the miR-411-3p sponge in OSCC and miR-411-3p exerted the inhibitory functions on OSCC cell growth. In addition, NFAT5 was proven as the target of miR-411-3p. Rescue assay indicated that overexpressing NFAT5 could reverse the inhibitory function of TTN-AS1 depletion on cell growth.

Conclusion: lncRNA TTN-AS1 contributed to the progression of OSCC via miR-411-3p/NFAT5 axis.

Keywords: NFAT5; Oral squamous cell carcinoma; TTN-AS1; miR-411-3p.

PubMed Disclaimer

Conflict of interest statement

Competing interestsNo competing interest exist.

Figures

Fig. 1
Fig. 1
Knockdown of TTN-AS1 restrains the proliferation and migration of OSCC cells. a The expression of TTN-AS1 was tested through qRT-PCR in OSCC cells. b The interference efficiency of TTN-AS1 was detected by qRT-PCR in SCC-4 and SCC-9 cells. c, d Cell proliferation ability was measured by colony formation and EdU experiments when TTN-AS1 was inhibited. e, f Cell apoptosis was evaluated through flow cytometry and TUNEL experiments after silencing TTN-AS1. g Wound healing assays were utilized to estimate cell migration when TTN-AS1 was subjected to knockdown. *P < 0.05; **P < 0.01
Fig. 2
Fig. 2
TTN-AS1 acts as the miR-411-3p sponge in OSCC. a, b The cellular location of TTN-AS1 was identified in SCC-4 and SCC-9 through Subcellular fractionation and FISH. c StarBsae website was utilized to predict the possible miRNAs that could bind with TTN-AS1. d MiR-411-3p expression was detected through qRT-PCR in OSCC cells. e The binding site of TTN-AS1 in miR-411-3p. f RIP assay was utilized to evaluate the relationship between miR-411-3p and TTN-AS1. g The efficiency of miR-411-3p overexpression was tested through qRT-PCR. h Luciferase reporter assays were conducted to verify the correlation of miR-411-3p and TTN-AS1. *P < 0.05; **P < 0.01
Fig. 3
Fig. 3
Upregulation of miR-411-3p represses cell proliferation and migration in OSCC. a, b Cell proliferation was estimated through colony formation and EdU experiments when miR-411-3p was overexpressed. c, d Flow cytometry and TUNEL experiments were implemented to measure cell apoptosis after overexpressing miR-411-3p. e Wound healing assays were adopted to test cell migration ability when miR-411-3p was subjected to upregulation. **P < 0.01
Fig. 4
Fig. 4
NFAT5 is a target gene of miR-411-3p in OSCC. a 28 mRNAs which had the binding site with miR-411-3p were predicted by starBase. b The qRT-PCR analysis was utilized to screen out the mRNAs which could be inhibited by NFAT5 depletion and miR-411-3p overexpression. c The expressions of TLL2, MGAT4A, RAB21 and NFAT5 in SCC-4 and SCC-9 cells through qRT-PCR. d The binding site of NFAT5 and miR-411-3p. e RIP assay was adopted to test the relationship between TTN-AS1, miR-411-3p and NFAT5. f The interference efficiency of miR-411-3p was tested by qRT-PCR analysis. g The expression of NFAT5 was detected when NFAT5 and miR-411-3p was silenced. h The interference efficiency of NFAT5 was tested by qRT-PCR analysis. i, j Cell proliferation was evaluated through colony formation and EdU experiments when NFAT5 was knocked down. k, l Cell apoptosis was measured through flow cytometry and TUNEL experiments after inhibiting NFAT5. m Wound healing assays were carried out for estimating cell migration after NFAT5 was subjected to inhibition. **P < 0.01
Fig. 5
Fig. 5
TTN-AS1 promotes OSCC progression via miR-411-3p/NFAT5 axis. a The qRT-PCR analysis was utilized to examine the overexpression efficiency of NFAT5 in SCC-4 and SCC-9 cells. b, c Cell proliferation capability in SCC-4 and SCC-9 cells was measured by colony formation and EdU assay in different groups. d, e Cell apoptosis was tested through flow cytometry and TUNEL assays in different groups. f Wound healing assays were implemented to detect the cell migration ability in different groups. **P < 0.01
Fig. 6
Fig. 6
TTN-AS1 promoted OSCC cell growth in vivo. a Tumors removed from the mice injected with sh-NC-transfected cells or sh-TTN-AS1#1-transfected cells. b, c Volume and weight in different groups were measured. d IHC staining of tumor tissues collected from different groups with anti-Ki-67 and anti-PCNA. **P < 0.01

References

    1. Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R. Epidemiology of oral cancer in Asia in the past decade–an update (2000-2012) Asian Pac J Cancer Prev APJCP. 2013;14(10):5567–5577. - PubMed
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. - PubMed
    1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–316. - PubMed
    1. Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2015;33(29):3305–3313. - PubMed
    1. Kessler P, Grabenbauer G, Leher A, Bloch-Birkholz A, Vairaktaris E, Neukam FW. Neoadjuvant and adjuvant therapy in patients with oral squamous cell carcinoma Long-term survival in a prospective, non-randomized study. Br J Oral Maxillofac Surg. 2008;46(1):1–5. - PubMed

LinkOut - more resources