The dimensionality of neural representations for control
- PMID: 32864401
- PMCID: PMC7451207
- DOI: 10.1016/j.cobeha.2020.07.002
The dimensionality of neural representations for control
Abstract
Cognitive control allows us to think and behave flexibly based on our context and goals. At the heart of theories of cognitive control is a control representation that enables the same input to produce different outputs contingent on contextual factors. In this review, we focus on an important property of the control representation's neural code: its representational dimensionality. Dimensionality of a neural representation balances a basic separability/generalizability trade-off in neural computation. We will discuss the implications of this trade-off for cognitive control. We will then briefly review current neuroscience findings regarding the dimensionality of control representations in the brain, particularly the prefrontal cortex. We conclude by highlighting open questions and crucial directions for future research.
Keywords: cognitive control; executive function; frontal lobes; neural computation; neural representation.
Conflict of interest statement
Conflict of Interest statement for: The dimensionality of neural representations for control ‘Declaration of interest: none’.
Figures


Similar articles
-
Orthogonal representations for robust context-dependent task performance in brains and neural networks.Neuron. 2022 Apr 6;110(7):1258-1270.e11. doi: 10.1016/j.neuron.2022.01.005. Epub 2022 Jan 31. Neuron. 2022. PMID: 35085492 Free PMC article.
-
Goal-seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex.Neuron. 2023 Dec 6;111(23):3885-3899.e6. doi: 10.1016/j.neuron.2023.08.021. Epub 2023 Sep 18. Neuron. 2023. PMID: 37725981
-
Hierarchical cognitive control and the frontal lobes.Handb Clin Neurol. 2019;163:165-177. doi: 10.1016/B978-0-12-804281-6.00009-4. Handb Clin Neurol. 2019. PMID: 31590728 Review.
-
Iconic realism or representational blindness? How young children and adults reason about pictures and objects.J Cogn Dev. 2020;21(5):774-796. doi: 10.1080/15248372.2020.1802276. Epub 2020 Sep 10. J Cogn Dev. 2020. PMID: 34650336 Free PMC article.
-
Peeling the Onion of Brain Representations.Annu Rev Neurosci. 2019 Jul 8;42:407-432. doi: 10.1146/annurev-neuro-080317-061906. Annu Rev Neurosci. 2019. PMID: 31283895 Review.
Cited by
-
Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.Front Hum Neurosci. 2023 Sep 26;17:1221944. doi: 10.3389/fnhum.2023.1221944. eCollection 2023. Front Hum Neurosci. 2023. PMID: 37822708 Free PMC article.
-
Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making.Neurosci Biobehav Rev. 2022 Mar;134:104483. doi: 10.1016/j.neubiorev.2021.12.006. Epub 2021 Dec 10. Neurosci Biobehav Rev. 2022. PMID: 34902441 Free PMC article. Review.
-
A Transient High-dimensional Geometry Affords Stable Conjunctive Subspaces for Efficient Action Selection.bioRxiv [Preprint]. 2024 Aug 31:2023.06.09.544428. doi: 10.1101/2023.06.09.544428. bioRxiv. 2024. Update in: Nat Commun. 2024 Oct 1;15(1):8513. doi: 10.1038/s41467-024-52777-6. PMID: 37333209 Free PMC article. Updated. Preprint.
-
Distinct functions for beta and alpha bursts in gating of human working memory.Nat Commun. 2024 Oct 17;15(1):8950. doi: 10.1038/s41467-024-53257-7. Nat Commun. 2024. PMID: 39419974 Free PMC article.
-
Cognitive control of behavior and hippocampal information processing without medial prefrontal cortex.Elife. 2025 Jun 23;13:RP104475. doi: 10.7554/eLife.104475. Elife. 2025. PMID: 40548696 Free PMC article.
References
-
- Cohen JD et al. (1990) On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review 97, 332–361. - PubMed
-
- Cohen JD (2017) Cognitive control: core constructs and current considerations In The Wiley Handbook of Cognitive Control (Egner T. ed), pp. 1–28, Wiley.
-
- Fusi S et al. (2016) Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol 37, 66–74. - PubMed
-
This review discusses recent theoretical developments on representational dimensionality and empirical findings in animals. They introduce the compelling computational link between mixed selectivity of neurons and dimensionality, and its implications for the separability/generalizability trade-off.
-
- Miller EK and Cohen JD (2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical