Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study
- PMID: 32866113
- DOI: 10.1515/cclm-2020-0978
Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study
Abstract
Objectives The sensitivity of molecular and serological methods for COVID-19 testing in an epidemiological setting is not well described. The aim of the study was to determine the frequency of negative RT-PCR results at first clinical presentation as well as negative serological results after a follow-up of at least 3 weeks. Methods Among all patients seen for suspected COVID-19 in Liechtenstein (n=1921), we included initially RT-PCR positive index patients (n=85) as well as initially RT-PCR negative (n=66) for follow-up with SARS-CoV-2 antibody testing. Antibodies were detected with seven different commercially available immunoassays. Frequencies of negative RT-PCR and serology results in individuals with COVID-19 were determined and compared to those observed in a validation cohort of Swiss patients (n=211). Results Among COVID-19 patients in Liechtenstein, false-negative RT-PCR at initial presentation was seen in 18% (12/66), whereas negative serology in COVID-19 patients was 4% (3/85). The validation cohort showed similar frequencies: 2/66 (3%) for negative serology, and 16/155 (10%) for false negative RT-PCR. COVID-19 patients with negative follow-up serology tended to have a longer disease duration (p=0.05) and more clinical symptoms than other patients with COVID-19 (p<0.05). The antibody titer from quantitative immunoassays was positively associated with the number of disease symptoms and disease duration (p<0.001). Conclusions RT-PCR at initial presentation in patients with suspected COVID-19 can miss infected patients. Antibody titers of SARS-CoV-2 assays are linked to the number of disease symptoms and the duration of disease. One in 25 patients with RT-PCR-positive COVID-19 does not develop antibodies detectable with frequently employed and commercially available immunoassays.
Keywords: COVID-19; RT-PCR; SARS-CoV-2; antibodies; prevalence; sensitivity; serum; specificity.
References
-
- Patel, R, Babady, E, Theel, ES, Storch, GA, Pinsky, BA, St George, K, et al. Report from the American society for microbiology COVID-19 International summit, 23 march 2020: value of diagnostic testing for SARS-CoV-2/COVID-19. mBio 2020;11:00722-20. https://doi.org/10.1128/mbio.00722-20.
-
- Long, QX, Liu, BZ, Deng, HJ, Wu, GC, Deng, K, Chen, YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020;26:845–8. https://doi.org/10.1038/s41591-020-0897-1.
-
- Drame, M, Tabue Teguo, M, Proye, E, Hequet, F, Hentzien, M, Kanagaratnam, L, et al. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19?. J Med Virol 2020. https://doi.org/10.1002/jmv.25996. in press.
-
- Stowell, S, Guarner, J. Role of serology in the COVID-19 pandemic. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa510. in press.
-
- Theel, ES, Slev, P, Wheeler, S, Couturier, MR, Wong, SJ, Kadkhoda, K. The role of antibody testing for SARS-CoV-2: is there one?. J Clin Microbiol 2020;58:e00797-20. https://doi.org/10.1128/jcm.01243-20.
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous