Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun 5;263(16):7691-702.

Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae

Affiliations
  • PMID: 3286639
Free article

Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae

E Dake et al. J Biol Chem. .
Free article

Abstract

The vast majority of nuclease activity in yeast mitochondria is due to a single polypeptide with an apparent molecular weight of 38,000. The enzyme is located in the mitochondrial inner membrane and requires non-ionic detergents for solubilization and activity. A combination of heparin-agarose and Cibacron blue-agarose chromatography was employed to purify the nuclease to approximately 90% homogeneity. The purified enzyme shows multiple activities: 1) RNase activity on single-stranded, but not double-stranded RNA, 2) endonuclease activity on single- and double-stranded DNA, and 3) a 5'-exonuclease activity on double-stranded DNA. Digestion products with DNA contain 5'-phosphorylated termini. Antibody raised against an analogous enzyme purified from Neurospora crassa (Chow, T. Y. K., and Fraser, M. (1983) J. Biol. Chem. 258, 12010-12018) inhibits and immunoprecipitates the yeast enzyme. This antibody inhibits 90-95% of all nuclease activity present in solubilized mitochondria, indicating that the purified nuclease accounts for the bulk of mitochondrial nucleolytic activity. Analysis of a mutant strain in which the gene for the nuclease has been disrupted supports this conclusion and shows that all detectable DNase activity and most nonspecific RNase activity in the mitochondria is due to this single enzyme.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources