Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding-deficient channels
- PMID: 32870823
- PMCID: PMC7566708
- DOI: 10.1172/jci.insight.141736
Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding-deficient channels
Abstract
The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.
Keywords: Arrhythmias; Calmodulin; Cardiology; Sodium channels.
Conflict of interest statement
Figures





Similar articles
-
Elementary mechanisms of calmodulin regulation of NaV1.5 producing divergent arrhythmogenic phenotypes.Proc Natl Acad Sci U S A. 2021 May 25;118(21):e2025085118. doi: 10.1073/pnas.2025085118. Proc Natl Acad Sci U S A. 2021. PMID: 34021086 Free PMC article.
-
SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia.Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12528-33. doi: 10.1073/pnas.1516430112. Epub 2015 Sep 21. Proc Natl Acad Sci U S A. 2015. PMID: 26392562 Free PMC article.
-
C-terminal phosphorylation of NaV1.5 impairs FGF13-dependent regulation of channel inactivation.J Biol Chem. 2017 Oct 20;292(42):17431-17448. doi: 10.1074/jbc.M117.787788. Epub 2017 Sep 7. J Biol Chem. 2017. PMID: 28882890 Free PMC article.
-
Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins.Protein Sci. 2016 Sep;25(9):1573-84. doi: 10.1002/pro.2960. Epub 2016 Jun 13. Protein Sci. 2016. PMID: 27262167 Free PMC article. Review.
-
Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias.Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H431-45. doi: 10.1152/ajpheart.00306.2013. Epub 2013 Jun 14. Am J Physiol Heart Circ Physiol. 2013. PMID: 23771687 Free PMC article. Review.
Cited by
-
Determinants of iFGF13-mediated regulation of myocardial voltage-gated sodium (NaV) channels in mouse.J Gen Physiol. 2023 Sep 4;155(9):e202213293. doi: 10.1085/jgp.202213293. Epub 2023 Jul 27. J Gen Physiol. 2023. PMID: 37516919 Free PMC article.
-
Loss of intracellular FGF14 (iFGF14) increases excitability of mature hippocampal pyramidal neurons.J Gen Physiol. 2025 Jul 7;157(4):e202413597. doi: 10.1085/jgp.202413597. Epub 2025 May 5. J Gen Physiol. 2025. PMID: 40323232
-
LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons.Cell. 2023 Dec 21;186(26):5766-5783.e25. doi: 10.1016/j.cell.2023.11.028. Cell. 2023. PMID: 38134874 Free PMC article.
-
Calmodulin Interactions with Voltage-Gated Sodium Channels.Int J Mol Sci. 2021 Sep 10;22(18):9798. doi: 10.3390/ijms22189798. Int J Mol Sci. 2021. PMID: 34575961 Free PMC article. Review.
-
Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.Cell Discov. 2025 Jan 10;11(1):3. doi: 10.1038/s41421-024-00738-0. Cell Discov. 2025. PMID: 39788950 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous