Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Jan:97:148.e17-148.e24.
doi: 10.1016/j.neurobiolaging.2020.07.002. Epub 2020 Jul 13.

Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease

Affiliations
Meta-Analysis

Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease

Emmeline E Brown et al. Neurobiol Aging. 2021 Jan.

Abstract

The LRRK2 gene has rare (p.G2019S) and common risk variants for Parkinson's disease (PD). DNM3 has previously been reported as a genetic modifier of the age at onset in PD patients carrying the LRRK2 p.G2019S mutation. We analyzed this effect in a new cohort of LRRK2 p.G2019S heterozygotes (n = 724) and meta-analyzed our data with previously published data (n = 754). VAMP4 is in close proximity to DNM3, and was associated with PD in a recent study, so it is possible that variants in this gene may be important. We also analyzed the effect of VAMP4 rs11578699 on LRRK2 penetrance. Our analysis of DNM3 in previously unpublished data does not show an effect on age at onset in LRRK2 p.G2019S carriers; however, the inter-study heterogeneity may indicate ethnic or population-specific effects of DNM3. There was no evidence for linkage disequilibrium between DNM3 and VAMP4. Analysis of sporadic patients stratified by the risk variant LRRK2 rs10878226 indicates a possible interaction between common variation in LRRK2 and VAMP4 in disease risk.

Keywords: Genetic modifiers; Leucine-rich repeat kinase 2; Parkinsonism; Parkinson’s disease.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Survival analysis of AAO in DNM3 rs2421947 (A–D) and VAMP4 rs11578699 genotype groups (E, F). DNM3 rs2421947 Kaplan-Meier and Kaplan-Meier median plots of (A) European idiopathic PD (n = 1956); (B) Ashkenazi Jewish p.G2019S carriers (n = 153) Kaplan-Meier plot and median plot; (C) European p.G2019S carriers (n = 286); and (D) North African p.G2019S carriers (n = 285). VAMP4 rs2421947 Kaplan-Meier and Kaplan-Meier median plots of (E) European and Ashkenazi Jewish p.G2019S carriers (n = 302); and (F) North African p.G2019S carriers (n = 484). Abbreviations: AAO, age at onset; DNM3, Dynamin 3; PD, Parkinson’s disease; VAMP4, vesicle-associated membrane protein 4.
Fig. 2
Fig. 2
Forest plot of meta-analyses for DNM3 rs2421947 and VAMP4 rs11578699. (A, C, and E) Cox proportional hazards model meta-analyses of LRRK2 p.G2019S carriers; (B, D, and F) linear regression meta-analyses of LRRK2 p.G2019S patients. (A, B) Meta-analyses of DNM3 rs2421947 GG versus CG and CC genotypes of novel data from this manuscript from 724 LRRK2 p.G2019S carriers; (C, D) Meta-analyses of DNM3 rs2421947 GG versus CG and CC genotypes from 1478 LRRK2 p.G2019S carriers including 754 previously published; (E, F) VAMP4 rs11578699 meta-analyses of CC versus TT and TC. Percentage contribution and numbers of individuals included in each analysis are indicated. Analyses are carried out on ethnicity subgroups: Ashkenazi Jewish (Summary: AJ), European (Summary: EU), and North African (Summary: NA). Abbreviations: DNM3, Dynamin 3; LRRK2, leucine-rich repeat kinase 2; VAMP4, vesicle-associated membrane protein 4.
Fig. 3
Fig. 3
Kaplan-Meier analysis by VAMP4 rs11578699 genotype in PD cases carrying LRRK2 risk variant (rs10878226). Abbreviations: LRRK2, leucine-rich repeat kinase 2; PD, Parkinson’s disease; VAMP4, vesicle-associated membrane protein 4.

References

    1. Blauwendraat C., Heilbron K., Vallerga C.L., Bandres-Ciga S., von Coelln R., Pihlstrom L., Simon-Sanchez J., Schulte C., Sharma M., Krohn L., Siitonen A., Iwaki H., Leonard H., Noyce A.J., Tan M., Gibbs J.R., Hernandez D.G., Scholz S.W., Jankovic J., Shulman L.M., Lesage S., Corvol J.C., Brice A., van Hilten J.J., Marinus J., 23andMe Research. Eerola-Rautio J., Tienari P., Majamaa K., Toft M., Grosset D.G., Gasser T., Heutink P., Shulman J.M., Wood N., Hardy J., Morris H.R., Hinds D.A., Gratten J., Visscher P.M., Gan-Or Z., Nalls M.A., Singleton A.B., International Parkinson's Disease Genomics Consortium Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and alpha-synuclein mechanisms. Mov. Disord. 2019;34:866–875. - PMC - PubMed
    1. Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. - PMC - PubMed
    1. Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., Kofler J.K., Burton E.A., Alessi D.R., Hastings T.G., Greenamyre J.T. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 2018;10:eaar5429. - PMC - PubMed
    1. Dunckley T., Huentelman M.J., Craig D.W., Pearson J.V., Szelinger S., Joshipura K., Halperin R.F., Stamper C., Jensen K.R., Letizia D., Hesterlee S.E., Pestronk A., Levine T., Bertorini T., Graves M.C., Mozaffar T., Jackson C.E., Bosch P., McVey A., Dick A., Barohn R., Lomen-Hoerth C., Rosenfeld J., O'Connor D.T., Zhang K., Crook R., Ryberg H., Hutton M., Katz J., Simpson E.P., Mitsumoto H., Bowser R., Miller R.G., Appel S.H., Stephan D.A. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N. Engl. J. Med. 2007;357:775–788. - PubMed
    1. Fernandez-Santiago R., Sharma M., Berg D., Illig T., Anneser J., Meyer T., Ludolph A., Gasser T. No evidence of association of FLJ10986 and ITPR2 with ALS in a large German cohort. Neurobiol. Aging. 2011;32:551.e1–551.e4. doi: 10.1016/j.neurobiolaging.2009.04.018. 5. - DOI - PubMed

Publication types