Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 25;11(25):6370-6382.
doi: 10.1039/d0sc01340d. eCollection 2020 Jul 7.

Luminescent tungsten(vi) complexes as photocatalysts for light-driven C-C and C-B bond formation reactions

Affiliations

Luminescent tungsten(vi) complexes as photocatalysts for light-driven C-C and C-B bond formation reactions

Daohong Yu et al. Chem Sci. .

Abstract

The realization of photocatalysis for practical synthetic application hinges on the development of inexpensive photocatalysts which can be prepared on a large scale. Herein an air-stable, visible-light-absorbing photoluminescent tungsten(vi) complex which can be conveniently prepared at the gram-scale is described. This complex could catalyse photochemical organic transformation reactions including borylation of aryl halides, such as aryl chloride, reductive coupling of benzyl bromides for C-C bond formation, reductive coupling of phenacyl bromides, and decarboxylative coupling of redox-active esters of alkyl carboxylic acid with high product yields and broad functional group tolerance.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Tungsten(vi) complexes W1a–W1c studied in this work.
Fig. 2
Fig. 2. UV-vis absorption (solid line) and emission (dashed line) spectra of W1a–W1c in degassed dichloromethane solutions at room temperature.
Fig. 3
Fig. 3. Emission spectra of (a) W1b and (b) W1c in CH2Cl2 under aerated conditions and under N2.
Fig. 4
Fig. 4. (a) Femtosecond time-resolved emission spectra of W1a in CH2Cl2 and (b) emission of W1a in different solvents (adapted with permission from ref. 15. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA).
Fig. 5
Fig. 5. Transition dipole moment density (left) and the fragment transition dipole moment (right) along the z-direction of the S0 → S1 excitation in toluene solution at the respective optimized S0 geometries of W1c (top) and W1a (bottom). Colour code: magenta, negative; green, positive; isovalue = 0.001 a.u.
Fig. 6
Fig. 6. fs-TA spectra of (a) W1a and (b) W1b in CH2Cl2 at room temperature.
Scheme 1
Scheme 1. Photo-induced dehydrogenation reactions catalysed by W1a.
Fig. 7
Fig. 7. Nanosecond time-resolved absorption difference spectra of (left) W1a only and (right) W1a in the presence of N,N-diisopropylethylamine (0.02 M) in degassed CH3CN at room temperature.

References

    1. Shaw M. H., Twilton J., MacMillan D. W. C. J. Org. Chem. 2016;81:6898. - PMC - PubMed
    2. Liu Q., Wu L.-Z. Natl. Sci. Rev. 2017;4:359.
    3. Parasram M., Gevorgyan V. Chem. Soc. Rev. 2017;46:6227. - PMC - PubMed
    4. Twilton J., Le C., Zhang P., Shaw M. H., Evans R. W., MacMillan D. W. C. Nat. Rev. Chem. 2017;1:0052.
    5. Fensterbank L., Goddard J.-P. and Ollivier C., in Visible Light Photocatalysis in Organic Chemistry, ed. C. Stephenson, T. Yoon and D. W. C. MacMillan, Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, 2018.
    6. Larsen C. B., Wenger O. S. Chem. – Eur. J. 2018;24:2039. - PubMed
    7. Marzo L., Pagire S. K., Reiser O., Konig B. Angew. Chem., Int. Ed. 2018;57:10034. - PubMed
    8. McAtee R. C., McClain E. J., Stephenson C. R. J. Trends Chem. 2019;1:111. - PMC - PubMed
    9. Glaser F., Wenger O. S. Coord. Chem. Rev. 2020;405:213129.
    10. Hockin B. M., Li C., Robertson N., Zysman-Colman E. Catal. Sci. Technol. 2019;9:889.
    11. Förster C., Heinze K. Chem. Soc. Rev. 2020;49:1057. - PubMed
    1. Dietrich-Buchecker C. O., Marnot P. A., Sauvage J.-P., Kirchhoff J. R., McMillin D. R. J. Chem. Soc., Chem. Commun. 1983:513.
    2. Kern J.-M., Sauvage J.-P. J. Chem. Soc., Chem. Commun. 1987:546.
    3. Li D., Che C.-M., Kwong H.-L., Yam V. W.-W. J. Chem. Soc., Dalton Trans. 1992:3325.
    4. Cuttell D. G., Kuang S.-M., Fanwick P. E., McMillin D. R., Walton R. A. J. Am. Chem. Soc. 2002;124:6. - PubMed
    5. Wang B., Shelar D. P., Han X.-Z., Li T.-T., Guan X., Lu W., Liu K., Chen Y., Fu W.-F., Che C.-M. Chem. – Eur. J. 2015;21:1184. - PubMed
    6. Knorn M., Rawner T., Czerwieniec R., Reiser O. ACS Catal. 2015;5:5186.
    7. Cetin M. M., Hodson R. T., Hart C. R., Cordes D. B., Findlater M., Casadonte Jr D. J., Cozzolino A. F., Mayer M. F. Dalton Trans. 2017;46:6553. - PubMed
    1. Grubel M., Bosque I., Altmann P. J., Bach T., Hess C. R. Chem. Sci. 2018;9:3313. - PMC - PubMed
    2. Buldt L. A., Larsen C. B., Wenger O. S. Chem. – Eur. J. 2017;23:8577. - PubMed
    3. Malzkuhn S., Wenger O. S. Coord. Chem. Rev. 2018;359:52.
    4. Lim C.-H., Kudisch M., Liu B., Miyake G. M. J. Am. Chem. Soc. 2018;140:7667. - PMC - PubMed
    5. Shen X., Li Y., Wen Z., Cao S., Hou X., Gong L. Chem. Sci. 2018;9:4562. - PMC - PubMed
    6. Shields B. J., Kudisch B., Scholes G. D., Doyle A. G. J. Am. Chem. Soc. 2018;140:3035. - PMC - PubMed
    7. Frem R. C. G., Massabni A. C., Massabni A. M. G., Mauro A. E. Inorg. Chim. Acta. 1997;255:53.
    8. Kunkely H., Vogler A. Inorg. Chem. Commun. 2000;3:143.
    1. Zhang Y., Petersen J. L., Milsmann C. J. Am. Chem. Soc. 2016;138:13115. - PubMed
    2. Zhang Y., Lee T. S., Petersen J. L., Milsmann C. J. Am. Chem. Soc. 2018;140:5934. - PubMed
    1. Büldt L. A., Guo X., Prescimone A., Wenger O. S. Angew. Chem., Int. Ed. 2016;55:11247. - PubMed
    2. Herr P., Glaser F., Büldt L. A., Larsen C. B., Wenger O. S. J. Am. Chem. Soc. 2019;141:14394. - PubMed