Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 2;14(9):e0008647.
doi: 10.1371/journal.pntd.0008647. eCollection 2020 Sep.

Seroprevalence of antibodies against Chlamydia trachomatis and enteropathogens and distance to the nearest water source among young children in the Amhara Region of Ethiopia

Affiliations

Seroprevalence of antibodies against Chlamydia trachomatis and enteropathogens and distance to the nearest water source among young children in the Amhara Region of Ethiopia

Kristen Aiemjoy et al. PLoS Negl Trop Dis. .

Abstract

The transmission of trachoma, caused by repeat infections with Chlamydia trachomatis, and many enteropathogens are linked to water quantity. We hypothesized that children living further from a water source would have higher exposure to C. trachomatis and enteric pathogens as determined by antibody responses. We used a multiplex bead assay to measure IgG antibody responses to C. trachomatis, Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, Campylobacter jejuni, enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae in eluted dried blood spots collected from 2267 children ages 0-9 years in 40 communities in rural Ethiopia in 2016. Linear distance from the child's house to the nearest water source was calculated. We derived seroprevalence cutoffs using external negative control populations, if available, or by fitting finite mixture models. We used targeted maximum likelihood estimation to estimate differences in seroprevalence according to distance to the nearest water source. Seroprevalence among 1-9-year-olds was 43% for C. trachomatis, 28% for S. enterica, 70% for E. histolytica, 54% for G. intestinalis, 96% for C. jejuni, 76% for ETEC and 94% for C. parvum. Seroprevalence increased with age for all pathogens. Median distance to the nearest water source was 473 meters (IQR 268, 719). Children living furthest from a water source had a 12% (95% CI: 2.6, 21.6) higher seroprevalence of S. enterica and a 12.7% (95% CI: 2.9, 22.6) higher seroprevalence of G. intestinalis compared to children living nearest. Seroprevalence for C. trachomatis and enteropathogens was high, with marked increases for most enteropathogens in the first two years of life. Children living further from a water source had higher seroprevalence of S. enterica and G. intestinalis indicating that improving access to water in the Ethiopia's Amhara region may reduce exposure to these enteropathogens in young children.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Age-dependent seroprevalence of trachoma and enteropathogens in the Amhara region of Ethiopia.
Age-dependent seroprevalence curves were fitted using generalized additive models (GAM) with a cubic spline for age. Seropositivity cutoffs were derived using ROC curves, if available, or by fitting finite mixture models (S1 Fig). Seropositivity cutoffs could not be estimated for V. cholerae in this study, so seroprevalence curves are not shown. For pathogens with more than one antigen, positivity to either antigen was considered positive. IgG response measured in multiplex using median fluorescence units minus background (MFI-bg) on the Luminex platform on 2267 blood samples from 2267 children.
Fig 2
Fig 2. Seropositivity for more than 1 pathogen by age.
Boxplot depicts median, upper and lower quartiles. Seropositivity cutoffs were derived using ROC curves, if available, or by fitting finite mixture models (S1 Fig). IgG response measured in multiplex using median fluorescence intensity minus background (MFI-bg) on the Luminex platform on 2267 blood samples from 2267 children.
Fig 3
Fig 3. Variation in seroprevalence by community and distance to the nearest water source.
Heatmap of community-level seroprevalence, darker colors indicate higher seroprevalence. Communities are sorted by median distance to the nearest water source, from furthest to nearest. Seropositivity cutoffs were derived using receiver operating characteristic (ROC) curves, if available, or by fitting finite mixture models (S1 Fig). For pathogens with more than one antigen, positivity to either antigen was considered positive. IgG response measured in multiplex using median fluorescence intensity minus background (MFI-bg) on the Luminex platform on 2267 blood samples from 2267 children aged 0 to 9 years.

References

    1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5: e1221–e1234. 10.1016/S2214-109X(17)30393-5 - DOI - PubMed
    1. Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SR, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases. 2018;18: 1211–1228. 10.1016/S1473-3099(18)30362-1 - DOI - PMC - PubMed
    1. Emerson PM, Cairncross S, Bailey RL, Mabey DC. Review of the evidence base for the “F” and “E” components of the SAFE strategy for trachoma control. Trop Med Int Health. 2000;5: 515–527. 10.1046/j.1365-3156.2000.00603.x - DOI - PubMed
    1. Taylor HR, Burton MJ, Haddad D, West S, Wright H. Trachoma. Lancet. 2014;384: 2142–2152. 10.1016/S0140-6736(13)62182-0 - DOI - PubMed
    1. Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. The Lancet Infectious Diseases. 2005;5: 42–52. 10.1016/S1473-3099(04)01253-8 - DOI - PubMed

Publication types

MeSH terms

Substances