Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 1;21(17):6336.
doi: 10.3390/ijms21176336.

ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease

Affiliations
Review

ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease

Maria Fe Lanfranco et al. Int J Mol Sci. .

Abstract

Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer's disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments.

Keywords: apolipoprotein E; cholesterol; lipid homeostasis; neurodegeneration.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. G.W.R. is a member of the APOE Scientific Advisory Board at Biogen.

Figures

Figure 1
Figure 1
apoE and cholesterol transport and efflux. (A) In astrocytes, cholesterol synthesis is regulated by the liver X receptors (LXRs) and the retinoid X receptor (RXR). The LXR/RXR heterodimer interacts with sequence-specific DNA elements positioned close to enhancers or promoters of their target genes, including the ABCA1, ABCG1, and APOE, thus acting directly to upregulate their transcription. (B) apoE initiates the formation of high-density lipoprotein (HDL)-like particles by accepting cholesterol and phospholipids through the ABCA1 and ABCG1 transporters. (C) apoE-containing lipoproteins and lipid complexes interact with cell surface heparin sulfate proteoglycans and cell membrane associated receptors, including the LDL receptor and the LDL receptor-related protein 1 (LRP) in neurons. This interaction promotes cellular uptake and redistribution of cholesterol to maintain proper cellular function, including neuronal growth, repair and remodeling of membranes, organelle biogenesis, and synaptogenesis.
Figure 2
Figure 2
Recalibrating apoE functions by increasing lipidation. Therapeutic strategies to improve the lipidated state of apoE include the use of: (1) Small molecules that enhance ABCA1 activity, (2) Liver X receptor (LXR) and retinoid X receptor (RXR) agonists to increase the expression of ABCA1, ABCG1 and APOE, (3) regulation of micro-RNAs to increase ABCA1 expression, (4) small molecules as apoE4 structure correctors, (5) anti-apoE4 immunotherapy targeting non-lipidated apoE, and (6) recalibrating apoE function by using AAV-APOE2 biologic therapy.

References

    1. Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., Roses A.D. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA. 1993;90:1977–1981. doi: 10.1073/pnas.90.5.1977. - DOI - PMC - PubMed
    1. Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., Roses A.D., Haines J.L., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. - DOI - PubMed
    1. Heffernan A.L., Chidgey C., Peng P., Masters C.L., Roberts B.R. The Neurobiology and Age-Related Prevalence of the epsilon4 Allele of Apolipoprotein E in Alzheimer’s Disease Cohorts. J. Mol. Neurosci. 2016;60:316–324. doi: 10.1007/s12031-016-0804-x. - DOI - PMC - PubMed
    1. Fernandez C.G., Hamby M.E., McReynolds M.L., Ray W.J. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2019;11:14. doi: 10.3389/fnagi.2019.00014. - DOI - PMC - PubMed
    1. Tensaouti Y., Yu T.S., Kernie S.G. Apolipoprotein E regulates the maturation of injury-induced adult-born hippocampal neurons following traumatic brain injury. PLoS ONE. 2020;15:e0229240. doi: 10.1371/journal.pone.0229240. - DOI - PMC - PubMed