Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 18:13:2855-2862.
doi: 10.2147/IDR.S260643. eCollection 2020.

Acinetobacter baumannii Sequence Types Harboring Genes Encoding Aminoglycoside Modifying Enzymes and 16SrRNA Methylase; a Multicenter Study from Pakistan

Affiliations

Acinetobacter baumannii Sequence Types Harboring Genes Encoding Aminoglycoside Modifying Enzymes and 16SrRNA Methylase; a Multicenter Study from Pakistan

Mohsin Khurshid et al. Infect Drug Resist. .

Abstract

Introduction: The aminoglycosides are widely used for the therapeutic management of infections caused by gram-negative bacteria, including the Acinetobacter baumannii strains. However, the resistance to the members of the aminoglycoside family, such as amikacin, gentamicin, and tobramycin, is increasingly being common among the clinical isolates.

Purpose: This study aimed to investigate the presence of 16SrRNA methylases and aminoglycoside modifying enzymes (AMEs) genes among aminoglycoside resistant A. baumannii isolates and to study the genetic diversity of the clinical population of A. baumannii in local hospitals.

Material and methods: The 143 A. baumannii clinical strains were analyzed for antimicrobial susceptibility, genetic screening for enzymes conferring aminoglycosides resistance followed by the multilocus sequence typing.

Results: The 133/143 (93%) isolates were non-susceptible to at least one of the tested aminoglycosides, including amikacin, gentamicin, and tobramycin. The MIC distribution has shown that 87.486.7% strains were resistant to amikacin and gentamicin, respectively. The aphA6, aadB, aacC1, and aphA1 were found in 74.1%, 59.4%, 16.1%, and 11.2% isolates, respectively, whereas the armA was found in 28% of the strains having a higher MIC value (MIC; ≥256µg/mL). The MLST data have shown that the ST589 and ST2 were the most common STs and corresponded to 51 (35.7%) and 38 (26.6%) isolates, respectively, and few of the isolates corresponding to these STs were found to harbor the armA gene with a variable genotypic profile for AMEs.

Discussion: The study has reported the incidence of various enzymes conferring aminoglycoside resistance among the A. baumannii clones for the first time from Pakistan. The findings suggest the possibility of transmission of aminoglycoside resistance determinants through the lateral gene transfer as well as clonal dissemination.

Keywords: A. baumannii; MLST; aminoglycosides; armA; gentamicin.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest in this work.

References

    1. McGann P, Courvalin P, Snesrud E, et al. Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure. MBio. 2014;5(2):e00915. doi:10.1128/mBio.00915-14 - DOI - PMC - PubMed
    1. Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M. Emergence of ISAba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. Future Microbiol. 2017;12:1261–1269. doi:10.2217/fmb-2017-0080 - DOI - PubMed
    1. Khurshid M, Rasool MH, Ashfaq UA, et al. Dissemination of blaOXA-23 harboring Carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J Glob Antimicrob Resist. 2020;21:357–362. doi:10.1016/j.jgar.2020.01.001 - DOI - PubMed
    1. Khurshid M, Rasool MH, Siddique MH, et al. Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. J Infect Dev Ctries. 2019;13(10):899–905. doi:10.3855/jidc.11410 - DOI - PubMed
    1. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450–470. doi:10.1128/CMR.05041-11 - DOI - PMC - PubMed

LinkOut - more resources