Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 3;192(10):619.
doi: 10.1007/s10661-020-08571-0.

State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China

Affiliations

State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China

Oluwafemi Adeyeye et al. Environ Monit Assess. .

Abstract

The present state of iron (Fe) and manganese (Mn) concentration in groundwater of Changchun city located within the Songnen Plain of northeastern China was evaluated in this study. Heavy metal sources, as well as triggering mechanism, were analyzed using a physicochemical, statistical and spatial approach. Results revealed that out of the 2600 samples analyzed, 214 (representing 8.24%) for Fe and 606 wells (representing 23.34%) for Mn exceeded the water standard. Organic matter-rich sediments and Fe-Mn nodules in aquifer and soil serve as sources of Fe and Mn. Organic and inorganic complex formations, as well as long residence time, were found to foster the release of Fe and Mn into groundwater. Additionally, pH and well depth was important in triggering Mn dissolution while groundwater mineralization, depth to the water table and well proximity to the river were found to have minimal/negligible effect on heavy metal mobilization. The removal of Fe and Mn from the water before use was proposed along with the sinking of deeper wells for groundwater exploitation to limit the use of polluted water.

Keywords: Iron; Manganese; Source; State; Triggering mechanism.

PubMed Disclaimer

LinkOut - more resources