Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;63(1):7-26.
doi: 10.1002/bimj.201900211. Epub 2020 Sep 3.

Bayesian regularization for flexible baseline hazard functions in Cox survival models

Affiliations

Bayesian regularization for flexible baseline hazard functions in Cox survival models

Elena Lázaro et al. Biom J. 2021 Jan.

Abstract

Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi-parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B-spline function. For those "semi-parametric" proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with microvirulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the deviance information criteria and the log pseudo-marginal likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the "semi-parametric" baseline hazard specification, the B-splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behavior of the risk.

Keywords: Weibull distribution; correlated prior process; cubic B-splines; piecewise functions; survival analysis.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Andersen, P. K., & Gill, R. D. (1982). Cox's regression model for counting processes: A large sample study. Annals of Statistics, 10, 1100-1120.
    1. Austin, P. C. (2012). Generating survival times to simulate Cox proportional hazards models with time-varying covariates. Statistics in Medicine, 31 (29), 3946-3958.
    1. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2015 & Hierarchical modeling and analysis for spatial data. Boca Raton, FL: Chapman & Hall CRC Press.
    1. Belitz, C., Brezger, A., Kneib, T., Lang, S., & Umlauf, N. (2015). Bayesx: Software for Bayesian Inference in Structured Additive Regression Models, available at http://www.statistik.lmu.de/~bayesx/bayesx.html.
    1. Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24 (11), 1713-1723.

Publication types

LinkOut - more resources