Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul 5;263(19):9149-54.

Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit

Affiliations
  • PMID: 3288630
Free article

Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit

J Kuret et al. J Biol Chem. .
Free article

Abstract

Oligonucleotide-directed mutagenesis was used to produce mutants in the hinge region of the regulatory subunit (R) of the Saccharomyces cerevisiae cAMP-dependent protein kinase. The mutant proteins were expressed in Escherichia coli, purified, urea treated to produce cAMP-free regulatory (R), and analyzed in vitro for catalytic (C) subunit inhibitory activity in the presence and absence of cAMP. When assayed in the absence of cAMP, wild type R dimer inhibited C with an IC50 of 40 nM. Replacement of amino acid residue Ser-145 (the autophosphorylation site of yeast R) with Ala or Gly produced mutants which were 2-10-fold better inhibitors of C, while replacement with Glu, Asp, Lys, or Thr produced mutants which were 2-5-fold worse inhibitors of C relative to wild type R. When assayed in the presence of cAMP, all R subunits had a decreased affinity for C subunit, with Ser-145 and Thr-145 undergoing autophosphorylation. These results suggest that the amino acid at position 145 of R contributes to R-C interaction and therefore influences the equilibrium of yeast protein kinase subunits in vitro.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources