Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb;231(2):e13555.
doi: 10.1111/apha.13555. Epub 2020 Sep 20.

Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient

Affiliations

Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient

Ziqing Li et al. Acta Physiol (Oxf). 2021 Feb.

Abstract

Aim: By activating prostacyclin receptors (IP receptors), prostacyclin (PGI2 ) exerts cardiovascular protective effects such as vasodilation and inhibition of vascular smooth muscle cell (VSMC) proliferation. However, IP receptors are dysfunctional under pathological conditions, and PGI2 produces detrimental effects that are opposite to its physiological protective effects via thromboxane-prostanoid (TP) receptors. This attempted to investigate whether or not IP receptor dysfunction facilitates the shift of PGI2 action.

Methods: The effects of PGI2 and its stable analog iloprost on VSMC phenotypic transformation and proliferation were examined in A10 cells silencing IP receptors, in human aortic VSMCs (HAVSMCs) knocked down IP receptor by CRISPR-Cas9, or in HAVSMCs transfected with a dysfunctional mutation of IP receptor IPR212C .

Results: PGI2 /iloprost treatment stimulated cell proliferation, upregulated synthetic proteins and downregulated contractile proteins, suggesting that PGI2 /iloprost promotes VSMC phenotypic transformation in IP-deficient cells. The effect of PGI2 /iloprost was prevented by TP antagonist S18886 or TP knockdown, indicating that the VSMC detrimental effect of PGI2 is dependent on TP receptor. RNA sequencing and Western blotting results showed that RhoA/ROCKs, MEK1/2 and JNK signalling cascades were involved. Moreover, IP deficiency increased the distribution of TP receptors at the cell membrane.

Conclusion: PGI2 induces VSMC phenotypic transformation when IP receptors are impaired. This is attributed to the activation of TP receptor and its downstream signaling cascades, and to the increased membrane distribution of TP receptors. The VSMC detrimental effect of PGI2 medicated by IP dysfunction and TP activation might probably exacerbate vascular remodelling, accelerating cardiovascular diseases.

Keywords: prostacyclin; prostacyclin receptor; thromboxane-prostanoid receptor; vascular smooth muscle cell phenotypic transformation.

PubMed Disclaimer

Comment in

References

REFERENCES

    1. Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002;296(5567):539-541.
    1. Egan KM, Lawson JA, Fries S, et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science. 2004;306(5703):1954-1957.
    1. Kobayashi T, Tahara Y, Matsumoto M, et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Investig. 2004;114(6):784-794.
    1. Rudic RD, Brinster D, Cheng Y, et al. COX-2-derived prostacyclin modulates vascular remodeling. Circ Res. 2005;96(12):1240-1247.
    1. Arehart E, Stitham J, Asselbergs FW, et al. Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition. Circ Res. 2008;102(8):986-993.

Publication types

LinkOut - more resources