Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments
- PMID: 32886852
- DOI: 10.1111/jerd.12635
Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments
Abstract
Objective: To evaluate the microtensile bond strength of four dental computer-aided design/computer-aided manufactured (CAD/CAM) ceramics after application of four different surface treatments.
Materials and methods: Four dental CAD/CAM ceramics were tested: feldspathic ceramic (VITABLOCKS-Mark II), polymer-infiltrated ceramic network (VITA ENAMIC), zirconia-reinforced lithium silicate (VITA SUPRINITY), and yttria-stabilized zirconia (VITA YZ T). Four surface treatments were applied: no treatment, 5% hydrofluoric acid-etching, airborne particle abrasion, and tribochemical silica coating. The ceramic blocks were repaired with nanohybrid composite (Tetric N-Collection). Sixteen test groups of 12 specimens were prepared. After thermocycling, microtensile bond testing was performed. The microtensile strengths values were statistically analyzed using two-way analysis of variance and Tukey's post-hoc test.
Results: Repaired feldspathic and resin polymer-infiltrated ceramic network ceramics demonstrated superior microtensile bond strengths compared to zirconia-reinforced lithium silicate and yttria-stabilized zirconia. Etched feldspathic and polymer-infiltrated ceramic network ceramics had higher bond strength than the untreated groups. Surface treatments did not affect the bond strength of zirconia-reinforced lithium silicate and yttria-stabilized zirconia with the exception of etching, which reduced the bond strength of yttria-stabilized zirconia.
Conclusion: Feldspathic ceramic and polymer-infiltrated ceramic network were repaired with dental composite after surface etching with hydrofluoric acid. Repair of zirconia-reinforced lithium silicate and yttria-stabilized zirconia did not demonstrate promising results.
Clinical significance: Repair of feldspathic ceramic and polymer-infiltrated ceramic network restorations may be a cost-effective means to promote the longevity of dental restorations. However, zirconia and zirconia-reinforced lithium disilicate restorations do not offer such an option.
Keywords: CAD/CAM ceramics; airborne particle abrasion; hydrofluoric acid; microtensile bond strength; repair; tribochemical silicoating.
© 2020 Wiley Periodicals LLC.
References
REFERENCES
-
- Rodrigues SB, Franken P, Celeste RK, Leitune VCB, Collares FM. CAD/CAM or conventional ceramic materials restorations longevity: a systematic review and meta-analysis. J Prosthodont Res. 2019;63:389-395.
-
- Sampaio F, Ozcan M, Gimenez TC, et al. Effects of manufacturing methods on the survival rate of ceramic and indirect composite restorations: a systematic review and meta-analysis. J Esthet Restor Dent. 2019;31:561-571.
-
- Vigolo P, Mutinelli S. Evaluation of zirconium-oxide-based ceramic single-unit posterior fixed dental prostheses (FDPs) generated with two CAD/CAM systems compared to porcelain-fused-to-metal single-unit posterior FDPs: a 5-year clinical prospective study. J Prosthodont. 2012;21:265-269.
-
- Akin A, Toksavul S, Toman M. Clinical marginal and internal adaptation of maxillary anterior single all-ceramic crowns and 2-year randomized controlled clinical trial. J Prosthodont. 2015;24:345-350.
-
- Guess PC, Selz CF, Steinhart YN, Stampf S, Strub JR. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. Int J Prosthodont. 2013;26:21-25.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous