The unknown human trophectoderm: implication for biopsy at the blastocyst stage
- PMID: 32892265
- PMCID: PMC7642161
- DOI: 10.1007/s10815-020-01925-0
The unknown human trophectoderm: implication for biopsy at the blastocyst stage
Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.
Keywords: Cell junctions; Compaction; Human embryo; Polarization; Trophectoderm biopsy.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures
References
-
- Adjaye J, Huntriss J, Herwig R, BenKahla A, Brink TC, Wierling C, Hultschig C, Groth D, Yaspo ML, Picton HM, Gosden RG, Lehrach H. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells. 2005;23:1514–1525. - PubMed
-
- Cauffman G, De Rycke M, Sermon K, et al. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum Reprod. 2009;24:63–70. - PubMed
-
- Cauffman G, Van de Velde H, Liebaers I, et al. Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod. 2005;11:173–181. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
