Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar;39(2):190-217.
doi: 10.1002/cbf.3587. Epub 2020 Sep 6.

A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment

Affiliations
Review

A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment

Mehmet Gunata et al. Cell Biochem Funct. 2021 Mar.

Abstract

Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.

Keywords: acute myocardial infarction; experimental models; ischaemia/reperfusion injury; oxidative stress; pharmacological treatment.

PubMed Disclaimer

References

REFERENCES

    1. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35(42):2950-2959.
    1. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet. 1999;353(9147):89-92.
    1. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O'Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343(13):915-922.
    1. Jennings R. Myocardial necrosis induced by temporary occulusion of a coronary artery in the dog. Arch Pathol. 1960;70:68-70.
    1. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360-368.

MeSH terms

LinkOut - more resources