Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;23(1):47-58.
doi: 10.1038/s41436-020-00946-5. Epub 2020 Sep 7.

Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls

Roddy Walsh  1   2 Najim Lahrouchi  3   4 Rafik Tadros  5 Florence Kyndt  4   6 Charlotte Glinge  4   7 Pieter G Postema  3   4 Ahmad S Amin  3   4 Eline A Nannenberg  4   8 James S Ware  9   10   11 Nicola Whiffin  9   10   11 Francesco Mazzarotto  9   10   12   13 Doris Škorić-Milosavljević  3   4 Christian Krijger  3   4 Elena Arbelo  14   15   16 Dominique Babuty  17 Hector Barajas-Martinez  18 Britt M Beckmann  19 Stéphane Bézieau  4   6 J Martijn Bos  20 Jeroen Breckpot  4   21 Oscar Campuzano  16   22   23   24 Silvia Castelletti  25 Candan Celen  26 Sebastian Clauss  19   27   28 Anniek Corveleyn  4   29 Lia Crotti  25   30   31   32 Federica Dagradi  25 Carlo de Asmundis  33 Isabelle Denjoy  4   34   35 Sven Dittmann  4   36 Patrick T Ellinor  37   38 Cristina Gil Ortuño  4   39 Carla Giustetto  40 Jean-Baptiste Gourraud  4   6 Daisuke Hazeki  41 Minoru Horie  42 Taisuke Ishikawa  43 Hideki Itoh  44 Yoshiaki Kaneko  45 Jørgen K Kanters  46 Hiroki Kimoto  47 Maria-Christina Kotta  25   32 Ingrid P C Krapels  48 Masahiko Kurabayashi  45 Julieta Lazarte  49 Antoine Leenhardt  4   34   35 Bart L Loeys  50 Catarina Lundin  51 Takeru Makiyama  52 Jacques Mansourati  53 Raphaël P Martins  54 Andrea Mazzanti  4   55 Stellan Mörner  4   56 Carlo Napolitano  4   55 Kimie Ohkubo  57 Michael Papadakis  4   58   59 Boris Rudic  60   61 Maria Sabater Molina  4   39 Frédéric Sacher  62 Hatice Sahin  26 Georgia Sarquella-Brugada  4   23   63 Regina Sebastiano  64 Sanjay Sharma  4   58   59 Mary N Sheppard  4   58   59 Keiko Shimamoto  65 M Benjamin Shoemaker  66 Birgit Stallmeyer  4   36 Johannes Steinfurt  67 Yuji Tanaka  68 David J Tester  20 Keisuke Usuda  69 Paul A van der Zwaag  70 Sonia Van Dooren  4   71 Lut Van Laer  50 Annika Winbo  72 Bo G Winkel  4   7 Kenichiro Yamagata  65 Sven Zumhagen  4   36 Paul G A Volders  73 Steven A Lubitz  37   38 Charles Antzelevitch  18 Pyotr G Platonov  74 Katja E Odening  67   75 Dan M Roden  66   76   77 Jason D Roberts  78 Jonathan R Skinner  79 Jacob Tfelt-Hansen  4   7   80 Maarten P van den Berg  81 Morten S Olesen  82 Pier D Lambiase  4   83 Martin Borggrefe  60   61 Kenshi Hayashi  69 Annika Rydberg  4   84 Tadashi Nakajima  45 Masao Yoshinaga  68 Johan B Saenen  85 Stefan Kääb  19   27 Pedro Brugada  4   86 Tomas Robyns  4   87 Daniela F Giachino  64   88 Michael J Ackerman  20 Ramon Brugada  89 Josep Brugada  90 Juan R Gimeno  4   91 Can Hasdemir  26 Pascale Guicheney  92 Silvia G Priori  4   55 Eric Schulze-Bahr  4   36 Naomasa Makita  43 Peter J Schwartz  25   32 Wataru Shimizu  93 Takeshi Aiba  65 Jean-Jacques Schott  4   6 Richard Redon  4   6 Seiko Ohno  94 Vincent Probst  4   6 Nantes Referral Center for inherited cardiac arrhythmiaElijah R Behr  4   58   59 Julien Barc  4   95 Connie R Bezzina  3   4
Collaborators, Affiliations

Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls

Roddy Walsh et al. Genet Med. 2021 Jan.

Abstract

Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate.

Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants.

Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency.

Conclusion: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.

Keywords: ACMG/AMP guidelines; Brugada; LQTS; variant interpretation.

PubMed Disclaimer

Conflict of interest statement

E.A. has received speaker fees from Biosense Webster. P.T.E. is supported by a grant from Bayer AG to the Broad Institute focused on the genetics and therapeutics of cardiovascular disease, and has consulted for Bayer AG, Novartis, and Quest Diagnostics. S.A.L. receives sponsored research support from Bristol Myers Squibb/Pfizer, Bayer AG, and Boehringer Ingelheim, and has consulted for Bristol Myers Squibb/Pfizer and Bayer AG. The other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1. For rare nontruncating variants in autosomal dominant disease, evidence classes and American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) rules (rule codes from Richards et al.) can be broadly grouped by their power to distinguish between pathogenic and benign variants (y-axis) and the likelihood that such evidence will be available (x-axis).
Variant-specific evidence (such as cosegregation in family pedigrees) is powerful but often unavailable for genetically heterogeneous diseases. Supporting evidence (such as population frequency) can be applied to most variants but is rarely sufficient for definitive classification. If available, data from case–control studies, relating to enrichment of specific variants or classes of variants, provide powerful gene/disease-specific evidence and help to address the high false negative rate associated with stringent contemporary guidelines.
Fig. 2
Fig. 2. Frequency of rare variants in KCNQ1, KCNH2 and SCN5A in inherited arrhythmia cohorts and gnomAD population controls.
(a) The odds ratio for disease association for long QT syndrome (LQTS) (KCNQ1, KCNH2, SCN5A) and Brugada syndrome (BrS) (SCN5A) stratified by filtering allele frequency, based on the prevalence of rare variants in the European arrhythmia cohorts and gnomAD exomes. Data for each bin are plotted at the upper frequency cutoff. Error bars represent 95% confidence intervals (CIs). The dashed gray line indicates an odds ratio (OR) of 1. (b) Proportion of cases in the BrS and LQTS European and Japanese cohorts with rare nontruncating (missense and inframe insertions/deletions) and truncating (frameshift, nonsense, splice) variants (blue) and comparison with the frequency of such variants in population-specific gnomAD data sets (gray). The darker shades indicate the rarest variants corresponding to an estimated penetrance of ≥50% filtering allele frequencies (FAF < 1.0 × 10−5 and 1.1 × 10−5 for BrS and LQTS respectively), while the lighter shades represent variants in the 10–50% penetrance range.
Fig. 3
Fig. 3. Identification of ion channel gene domains enriched in case variants and effect of case-control analyses on variant classification in inherited arrhythmia patients.
(a) Distribution of rare, nontruncating variants in the primary Brugada syndrome (BrS) and long QT syndrome (LQTS) cohorts across the domains of KCNQ1, KCNH2, and SCN5A and equivalent variant classes in gnomAD (full data set). Domain coordinates are derived from UniProt entries, with the exception of the KCNQ1 C-terminus highly conserved regions (from Kapplinger et al.) and the KCNH2 N-terminus cluster (based on variant distribution observed in this cohort and published referral cohort). Regions with poor coverage in gnomAD exome sequencing, and therefore excluded from etiological fraction (EF) calculations, are in white. Darker gray indicates higher variant density (overlapping variants not plotted separately). The coordinates describe amino acid position. (bd) Effect of case–control evidence (PM1/PS4 rules) on American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) classification of rare nontruncating variants. For BrS, the proportion of cases with pathogenic, likely pathogenic, and variants of uncertain significance (VUS) are displayed before and after use of these evidence classes, for European (b) and Japanese (c) cases. Classification using case–control evidence for both European and Japanese LQTS cases is shown in (d). The sensitivity of variant classification methods can be measured by comparison with the rate of rare benign variation in gnomAD (gray); any excess beyond this is expected to reflect pathogenic variation in cases and therefore represents the target cohort yield of pathogenic variants.

References

    1. Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203. doi: 10.1038/gim.2016.90. - DOI - PMC - PubMed
    1. Hosseini SM, Kim R, Udupa S, et al. Reappraisal of reported genes for sudden arrhythmic death. Circulation. 2018;138:1195–1205. doi: 10.1161/CIRCULATIONAHA.118.035070. - DOI - PMC - PubMed
    1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–423. doi: 10.1038/gim.2015.30. - DOI - PMC - PubMed
    1. Walsh R, Mazzarotto F, Whiffin N, et al. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med. 2019;11:5. doi: 10.1186/s13073-019-0616-z. - DOI - PMC - PubMed
    1. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA) Heart Rhythm. 2011;8:1308–1339. doi: 10.1016/j.hrthm.2011.05.020. - DOI - PubMed

Publication types