Letter to the Editor: Predicting Survival After Hepatocellular Carcinoma Resection Using Deep-Learning on Histological Slides
- PMID: 32894573
- DOI: 10.1002/hep.31543
Letter to the Editor: Predicting Survival After Hepatocellular Carcinoma Resection Using Deep-Learning on Histological Slides
Comment in
-
REPLY.Hepatology. 2021 May;73(5):2078-2079. doi: 10.1002/hep.31540. Hepatology. 2021. PMID: 32894800 No abstract available.
Comment on
-
Predicting Survival After Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides.Hepatology. 2020 Dec;72(6):2000-2013. doi: 10.1002/hep.31207. Hepatology. 2020. PMID: 32108950
References
-
- Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology 2020 Feb 28. https://doi.org/10.1002/hep.31207. [Epub ahead of print]
-
- Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301-1314.
-
- Gorgi Zadeh S, Schmid M. Bias in cross-entropy-based training of deep survival networks. IEEE Trans Pattern Anal Mach Intell 2020 Mar 8. https://doi.org/10.1109/tpami.2020.2979450. [Epub ahead of print]
-
- She Y, Jin Z, Wu J, Deng J, Zhang L, Su H, et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw Open 2020;3:e205842.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical