Substrate oxidation in primary human skeletal muscle cells is influenced by donor age
- PMID: 32897419
- PMCID: PMC7683494
- DOI: 10.1007/s00441-020-03275-w
Substrate oxidation in primary human skeletal muscle cells is influenced by donor age
Abstract
Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.
Keywords: Age; Body mass index (BMI); Energy metabolism; Gender; Muscle of origin; Skeletal muscle cells.
Conflict of interest statement
The authors declare that they have no conflicts of interest.
Figures
References
-
- Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC. Are cultured human myotubes far from home? Cell Tissue Res. 2013;354:671–682. - PubMed
-
- Alberti KGMM, Zimmet P, Shaw J. International diabetes federation: a consensus on type 2 diabetes prevention. Diabet Med. 2007;24:451–463. - PubMed
-
- Berggren JR, Boyle KE, Chapman WH, Houmard JA. Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab. 2008;294:E726–E732. - PubMed
-
- Bonavaud S, Agbulut O, Nizard R, D’honneur G, Mouly V, Butler-Browne G. A discrepancy resolved: human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscul Disord. 2001;11:747–752. - PubMed
-
- Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ, Dyck DJ. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004;18:1144–1146. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
