Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion
- PMID: 32898132
- PMCID: PMC7523959
- DOI: 10.1371/journal.pcbi.1008179
Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion
Abstract
Detection and segmentation of macrophage cells in fluorescence microscopy images is a challenging problem, mainly due to crowded cells, variation in shapes, and morphological complexity. We present a new deep learning approach for cell detection and segmentation that incorporates previously learned nucleus features. A novel fusion of feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and segmentation is used to improve performance on a microscopic image dataset created by us and provided for public use, containing both nucleus and cell signals. Our experimental results indicate that cell detection and segmentation performance significantly benefit from the fusion of previously learned nucleus features. The proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%, respectively.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Usaj MM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-content screening for quantitative cell biology. Trends in Cell Biology. 2016;26(8):598–611. - PubMed
-
- Chen X, Zhu Y, Li F, Zheng ZY, Chang EC, Ma J, et al. Accurate segmentation of touching cells in multi-channel microscopy images with geodesic distance based clustering. Neurocomputing. 2015;149:39–47.
-
- He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: IEEE Int. Conf on Computer Vision (ICCV). IEEE; 2017. p. 2980–2988.
-
- Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Transactions on Biomedical Engineering. 2010;57(4):841–852. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
