Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 3;21(17):6429.
doi: 10.3390/ijms21176429.

The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement

Affiliations
Review

The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement

Sara Bachiller et al. Int J Mol Sci. .

Abstract

Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. The ubiquitin-proteasome system (UPS) plays a fundamental role in maintaining protein homeostasis, being involved in protein degradation, among other cellular functions. Through a cascade of enzymatic reactions, proteins are ubiquitinated, tagged, and translocated to the proteasome to be degraded. Within the ubiquitin system, we can find three main groups of enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin-protein ligases). Only the ubiquitinated proteins with specific chain linkages (such as K48) will be degraded by the UPS. In this review, we describe the relevance of this system in NMDs, summarizing the UPS proteins that have been involved in pathological conditions and neuromuscular disorders, such as Spinal Muscular Atrophy (SMA), Charcot-Marie-Tooth disease (CMT), or Duchenne Muscular Dystrophy (DMD), among others. A better knowledge of the processes involved in the maintenance of proteostasis may pave the way for future progress in neuromuscular disorder studies and treatments.

Keywords: UPS; neuromuscular disorder; neuromuscular junction; proteasome; synapse; ubiquitin.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The ubiquitin–proteasome system (UPS). Ubiquitin-activating enzyme (E1) activates the ubiquitin (Ub) through an ATP-dependent reaction. Then, the activated ubiquitin is transferred to a ubiquitin-conjugating enzyme (E2) and to the target protein by an E3 ubiquitin ligase. Following several rounds of ubiquitination, the polyubiquitinated protein is recognized by the proteasome and degraded to small peptides and amino acids (AAs). To finish the UPS cycle, the polyubiquitin molecules are disassembled by deubiquitinating enzymes (DUBs) and recycled for new rounds of ubiquitination.

Similar articles

Cited by

References

    1. Camacho A., Esteban J., Paradas C. Report by the Spanish Foundation for the Brain on the social impact of amyotrophic lateral sclerosis and other neuromuscular disorders. Neurol. (Engl. Ed.) 2018;33:35–46. doi: 10.1016/j.nrleng.2015.02.006. - DOI - PubMed
    1. Emery A.E. Population frequencies of inherited neuromuscular diseases—A world survey. Neuromuscul. Disord. 1991;1:19–29. doi: 10.1016/0960-8966(91)90039-U. - DOI - PubMed
    1. Deenen J.C., Horlings C.G., Verschuuren J.J., Verbeek A.L., Van Engelen B.G. The Epidemiology of Neuromuscular Disorders: A Comprehensive Overview of the Literature. J. Neuromuscul. Dis. 2015;2:73–85. doi: 10.3233/JND-140045. - DOI - PubMed
    1. Zheng Q., Huang T., Zhang L., Zhou Y., Luo H., Xu H., Wang X. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front. Aging Neurosci. 2016;8:303. doi: 10.3389/fnagi.2016.00303. - DOI - PMC - PubMed
    1. Deng H.X., Chen W., Hong S.T., Boycott K.Y., Gorrie G.H., Siddique N., Faisal Fecto Y.Y., Hong Zhai Y.S., Makito Hirano H.J., Rampersaud E., et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–215. doi: 10.1038/nature10353. - DOI - PMC - PubMed

MeSH terms

Substances