Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 9;21(Suppl 9):585.
doi: 10.1186/s12864-020-06938-8.

Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data

Affiliations

Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data

Siamak Zamani Dadaneh et al. BMC Genomics. .

Abstract

Background: Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution. Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying cellular process to better understand development and disease mechanisms. The unique analytic challenge is to appropriately model highly over-dispersed scRNA-seq count data with prevalent dropouts (zero counts), making zero-inflated dimensionality reduction techniques popular for scRNA-seq data analyses. Employing zero-inflated distributions, however, may place extra emphasis on zero counts, leading to potential bias when identifying the latent structure of the data.

Results: In this paper, we propose a fully generative hierarchical gamma-negative binomial (hGNB) model of scRNA-seq data, obviating the need for explicitly modeling zero inflation. At the same time, hGNB can naturally account for covariate effects at both the gene and cell levels to identify complex latent representations of scRNA-seq data, without the need for commonly adopted pre-processing steps such as normalization. Efficient Bayesian model inference is derived by exploiting conditional conjugacy via novel data augmentation techniques.

Conclusion: Experimental results on both simulated data and several real-world scRNA-seq datasets suggest that hGNB is a powerful tool for cell cluster discovery as well as cell lineage inference.

Keywords: Bayesian; Hierarchical modeling; Single-cell RNA sequencing.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Graphical representation of the hierarchical gamma-negative binomial (hGNB) model
Fig. 2
Fig. 2
Mean-difference (MD) plot for S1/CA1 dataset. The solid red line represents the local regression fit to the data
Fig. 3
Fig. 3
Low-dimensional representations of the S1/CA1 dataset. Panels correspond to (a) PCA (on total-count normalized data), (b) ZIFA (on total-count normalized data), (c) ZINB-WaVE, and (d) hGNB
Fig. 4
Fig. 4
Average silhouette width in scRNA-seq datasets (a) S1/CA1, (b) mESC, and (c) V1. Silhouette widths were computed in the low-dimensional space, using the groupings provided by the authors of the original publications. PCA and ZIFA were applied with both unnormalized (RAW) data and after total count (TC) normalization
Fig. 5
Fig. 5
Lineage inference on the OE dataset. The low dimensional data representation derived by hGNB were used to cluster cells by RSEC. The minimum spanning tree (MST) of the derived clusters constructed by slingshot is also displayed

References

    1. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14(9):618–30. - PubMed
    1. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9. - PMC - PubMed
    1. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. - PMC - PubMed
    1. Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193–6. - PubMed
    1. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401. - PMC - PubMed

LinkOut - more resources